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Abstract  

The paper deals with the problem of the chaotic behaviour of a tethered system anchored on the 

Phobos surface directly under the L1 collinear libration point. Two gravitational forces of Mars 

and Phobos, plus a centrifugal force due to the rotation of the Mars-Phobos system, act on the 

tether. These forces vary with time due to the small eccentricity of the Mars-Phobos orbit. The 

basic assumptions are formulated in terms of a planar elliptic restricted three-body problem. The 

motion equations in Nechvile's variables are derived in polar coordinates relative to the anchor 

point of the tether. The motion of the tethered system is divided into perturbed and unperturbed 

when the eccentricity of the Mars-Phobos orbit is zero. The points of unstable equilibrium of the 

tether are found, which together with periodic perturbations associated with small eccentricity are 

the cause of chaotic behaviour of the tether. A tether length control law is proposed, which allows 

to suppress chaos by choosing the control coefficient. The Melnikov method is used to prove the 

chaotic nature of the tether and to find approximate the control coefficient needed to suppress the 

chaos. Verification of the obtained calculations is performed by means of Poincaré portraits for 

the basic nonlinear tether equation. The results of this study can be used for new Phobos 

exploration missions using an anchored tethered system and other future missions to study small 

planetary satellites in the Solar System. 
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1. Introduction 

 

New ideas and technical challenges associated with space tethered systems pose new scientific 

problems that have been and will be successfully implemented in future missions. Several books 
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[1-4] and hundreds of scientific articles (e.g. [5-26]) have explored the possibilities of tethered 

systems. Space technology based on tethered systems, which can be seen as an alternative and 

cheaper system to rocket systems, is one of the fastest developing technical fields.  

The proposed work investigates a space tether as a classical tether anchored to the surface of 

Phobos. The peculiarity of the Martian satellite Phobos is that, at a distance of about 3.4 km from 

the surface of Phobos, there is an equilibrium position L1/L2 [27, 28], where the gravitational 

force of Mars and Phobos and the centrifugal force due to the rotation of the Mars-Phobos system 

are balanced. In addition, Phobos is always facing Mars with the same side. These two features 

allow to consider an end body anchored to the tether above the point L1/L2 relative to Phobos as 

a tether on which the above three forces act. Unlike a mathematical pendulum, there is not one 

gravitational force, but two gravitational forces and one centrifugal force acting on the end body 

(mass point). Moreover, due to the eccentricity of the orbit of the Mars-Phobos system, the distance 

between these large bodies (primaries) changes, and thus the gravitational and centrifugal forces 

change because of the irregular rotation of the Mars-Phobos system. 

What is the practical use of such the anchored tethered system? There are at least three options: 

 a spacecraft attached to the tether can "hover" over Phobos for any time without using jet 

propulsion to explore its surface; 

 this tethered system can be used as a space elevator to carry the necessary equipment to the 

surface of Phobos and soil samples back in the opposite direction. 

 realisation of a mission similar to the Martian Moons eXploration (MMX) [29, 30] for 

transfer to distant retrograde orbits (DROs), which are also called quasi-satellite orbits 

(QSOs) [61, 62], within an Earth-Mars mission. 

Of course, all of these options can be combined with each other, and even combined into a single 

mission. A first study of this problem for the case of a circular orbit is carried out in [17].  

The aim of the work is to investigate and explain a chaotic behaviour of the tether anchored to 

the surface of Phobos, and to design a control law to suppress the chaos. This paper only considers 

the tether anchored to the surface of Phobos under the L1 libration point. Everything presented in 

this paper can be rewritten for the case where the tether is anchored under the L2 libration point. 

Note also that it does not matter which pair of primaries we study, Mars-Phobos, Mars-Deimos or 

Earth-Moon. All results are valid for any pair of primaries. 

The objective of the paper is achieved in five phases: 



1. The basic assumptions are formulated in the framework of an elliptic planar restricted 

three-body problem, and the equations of motion in Nechvile's variables in the rotating 

Cartesian coordinate system are reduced to the equation of the tether in polar 

coordinates with respect to the anchor point located to the surface of Phobos directly 

under the L1 libration point. 

2. The motion of the tether is classified as undisturbed, when the eccentricity of the Mars-

Phobos orbit is zero, and disturbed, when the eccentricity is not zero. The stable and 

unstable equilibriums for the unperturbed motion are found and the perturbations 

caused by the small eccentricity are shown. By numerically simulating the perturbed 

motion, Poincaré sections are constructed which show that the small eccentricity leads 

to chaos.  

3. A control law for the tether length is proposed based on [33], and the equation of 

perturbed motion of the tether is linearised by small parameters: the eccentricity of the 

orbit and a control parameter. 

4. Approximate heteroclinic solutions are obtained in terms of hyperbolic functions, for 

which the Melnikov function [34] is derived. The Melnikov function gives a measure 

of the distance between the stable and unstable manifolds of the perturbed hyperbolic 

fixed points. We find an approximate value of the control parameter when the Melnikov 

function does not have simple zeroes and when chaos is excluded. 

5. The control parameter obtained is verified by constructing Poincaré sections using the 

basiс nonlinear equation of the perturbed tether motion. 

 

2. Motion equations of the tether 

 

2.1. Key assumptions 

 

We introduce acceptable assumptions that do not distort a principled picture: 

 Mars and Phobos move in elliptical orbits around a common centre of mass with a small 

eccentricity 0.0 1)( 15e  .  

 The mass m  of the tethered end-point M  is significantly less than the primaries’ masses 

1m  and 2m   

2 1m m m .           (1) 



 The tether is inextensible and massless rigid rod.  

 In all considered cases, only in-plane motion is studied. 

 

2.2. Motion equations in polar coordinates relative to the anchor point 

 

We derive the planar motion equations of end-point of the tether M  in gravitational fields of 

two primaries 1M  and 2M  (Mars-Phobos) in polar coordinates relative to the anchored point on 

the Phobos surface in terms of the restricted elliptic three-body problem [27]. The distance between 

the two primaries is 

1 cos

p
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where p  is the semilatus rectum, e  is the eccentricity of the two-body orbit of the primaries, and 

f  is the true anomaly. In the barycentre-centred synodic coordinate system Oxy  (Fig. 1), which 

rotates with the two primaries and using Nechvile’s variables  ,  , the end-point motion can be 

described in dimensionless form as [27, 28] 
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where   is the potential function given by 
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where (.) (.)
d
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   and 
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  .  The dimensionless coordinates of the tether anchor point 

and the tether length are entered as follows  
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Here a  is the distance between the anchor point A  and the centre of Phobos. Position of the end-



point M  relative to the anchored point in a polar reference frame  ,l   is defined by substituting 

the variables  

cos , sink k          ,         (9) 

where c s1 ok e f  . 

Eqs. (3) and (4) in the polar reference frame are written as  
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where  T  is the dimensionless tether tension force, 
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where dimensionless distances between the primaries and the end-point are 
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Fig. 1. The frame Oxy  and the polar frame  ,l  . 



 

2.2. A tether of constant length. Perturbed and unperturbed motion 

 

Assuming that a tether length is constant  

0, 0l const                (16) 

In this case, Eq. (10) is rewritten as follows 
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In the case of an unperturbed motion, where the primaries move on circular orbits ( 0e  ) relative 

to its center of mass and the distance between them does not change, Eq. (18) has the form 
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where 

    
0 0 3 3

1 2

1 1sin
e 

     


  

   
  

  
  





 .    (20) 

Now here  
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Eq. (19) has the following energy integral  
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where E  is the total energy, the potential energy is  
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3. Unstable equilibrium, disturbances and chaos 

 

3.1. Preliminary observations 

 



Collinear libration points, including the L1 libration point are defined as the roots of Eq. (3)  for 

0   , 0  ,  0   , 0e  . 

For the Mars-Phobos system 
1

0.998229L  . 

The planar cross-section of Phobos can be considered as an ellipse if the Stickney crater is 

disregarded [35]. Analytically, the equation of a standard ellipse centered at the origin with a 

semi-major ( 2a ) and a semi-minor ( 2b ) axes is 
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where 13.0a km and 11.2b km  are the semi-major and the semi-minor axes, 16.812hr km  is 

the distance between the L1 libration point and the center of this ellipse. Then, using Eq. (8), 

obtain  

0.998588  , 
1 1
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In this case, the length of the tether is equal to 
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3.2 Phase portrait and bifurcation diagram 

 

The phase portrait of the system (19) are plotted for the tether length 

4000l m .           (28) 

Fig. 2 shows the potential energy (24) and the phase portraits determined by Eq. (23).  Solving the 

equation 
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on the interval  2 ,2  one obtains the five stable equilibrium positions 
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and the four unstable equilibrium positions (Fig. 2)   
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Fig. 2. (a) The function   U   and (b) the phase portrait  
d

df


  for the tether length 

4000l m .  

 

As shown in Fig. 2, the phase portrait is symmetric with respect to the ordinate axis for the 

anchored tether without the transverse displacement. A bifurcation diagram as a function of the 

tether length in Fig. 3, where the solid lines correspond to unstable equilibrium positions, and 

dashed lines indicate stable positions in the interval ,
2 2
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Fig. 3. Bifurcation diagram ( * * 10300l mp  , 
1 1

3411.878L Ll mp  ).  

 

Obviously, for the planar model of Phobos (25), the tether deflection angle should be in the 

interval: 
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The tether will touch the surface of Phobos near the attachment point if the condition  (32) is 

violated. It is therefore clear that the tether length is also limited by the value of * * 10300l mp 

. On the other hand, the tether must be greater than the distance from the anchor point to the L1 

libration point 
1 1

3412L Ll p m  , otherwise the tether will not be able to hover above the surface 

of Phobos. For this reason, there are also the following limits for the relative length of the tether 
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where
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3.3 Detecting chaos 

 

Two circumstances determine the possibility of the occurrence of chaos: firstly, the presence of 

unstable equilibrium positions of the unperturbed system (19), as shown in Fig. 2, and secondly, 

periodic perturbations caused by the small eccentricity of the Mars-Phobos orbit. The presence of 

this perturbation is illustrated by the last summand in Eq. (18): 
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To study the influences of the small disturbances on the dynamics, the perturbed motion is 

analyzed by constructing Poincaré surfaces in the two-dimensional space ( ,  ). Constructions 

of the Poincaré surfaces are based on the numerical integration of Eq. (17). All the trajectories 

shown in Figs. 4 and 5 start on the abscissa axis 

 0 0.01, 0.01us us    , 0 0  .       (35) 

As shown in Fig. 4, at 0e   the unperturbed motion is realised and a regular phase space structure 

is observed, the trajectories have no intersections and the Poincaré sections coincide with the 

unperturbed phase portrait. 

 

Fig. 4. Poincaré sections for 0e  . 

 

The perturbations result in the complication of phase space and the occurrence of a chaotic layer 

near the unperturbed separatrixes as illustrated in Fig. 5.  

 

Fig. 5. Poincaré sections for 0.0151e  . 

 

 



4. Melnikov method. Chaos suppression 

 

4.1. The tether length control 

 

The periodic changes in the gravitational and centrifugal forces associated with the small 

eccentricity of Mars-Phobos orbits lead to chaos. If, as in our case, the tether is fixed at one end, 

its angular motion can only be affected by changing its length. The control law of the tether, which 

reduces an oscillation amplitude of a classical tether, can be used in the form of [33] 
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where a  is a small dimensionless control parameter, 0 const   is the relative length of the tether 

at the tether equilibrium position 0  . The control law (36) is substituted in the basic equation 

of motion (10) and then this equation is expanded in a power series of small parameters a  and e . 

Further, keeping only the first order terms, the obtained equation is written as 
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Now here  
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Note that the function (38) depends only on the angle of deflection of the tether  . The 

disturbing torque (39) is a periodic function of the true anomaly f  and the damping torque is 

determined by the function (40). 

 

4.2. Melnikov method 

 

The existence of heteroclinic intersections can be proved using the Melnikov method [34]. The 

perturbed second-order equation (37) is represented as two first-order differential equations 
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where 
0 ( ) [ ( ), ( ) ]q f f f     are the solutions of the unperturbed heteroclinic orbits that are to 

be found. 

 

4.3 Approximate heteroclinic solutions 

 

To construct the Melnikov function, it is necessary to find an analytical solution explicitly for 

the equation of undisturbed motion on the upper and lower separatrices bounding the area centred 

on point 0   (Fig. 2 b). The equations of unperturbed motion are obtained from Eq. (37) if the 

right-hand part of the equation is set equal to zero, as follows 
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This equation has the following energy integral  
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where E  is the total energy, the potential energy is  
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As can be seen from Eqs. (46)-(48) and (38), Eq. (46) integrates in quadrature, but it is not possible 

to find its analytical solutions. We obtain an approximate solution. The nonlinear function ( )F   

is represented as a third-order power series 
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This equation has the following energy integral  
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0
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E constU
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where E  is the total energy, the potential energy is  
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Separating the variables in the energy integral (52) gives the following quadrature 
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This elliptic integral can be represented as follows 
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On the separatrices the following equalities take place 

  1 2 us     3 4 us    ,        (56) 

then the integral (55) can be rewritten as 
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where 32a   . 

The integral (57) can be easily calculated 
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Finally, the formula (58) can be written using hyperbolic functions as 
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0 0 0 0[ ( ), ( ) ] [ ( ), ( ) ]f f f f f f f f             .    (60) 

  

4.4. Melnikov function 

 

The Melnikov function (45) is rewritten taking into account equations (39) and (40) 
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Here  
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The Melnikov function give us a measure of the distance between the stable and unstable 

manifolds of the perturbed hyperbolic fixed points. Thus, if 0( ) 0M f   there are transverse 

intersections between the stable and unstable trajectories. From formula (61), that the Melnikov 

function has no simple zeros if the following condition is satisfied 
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At a tether length of 4000 m for the upper and lower separatrix, the critical value of the control 

coefficient, respectively, is equal to 

545 10.5 0a 

  .         (68) 

661 10.4 0a 

  .         (69) 

Fig. 6 depicts the Melnikov function for different values of the control parameter a . 

a 

 

 

b 

 



 

Fig. 6. (a)The Melnikov function for the upper separatrix 0( )M f   and (b) for the lower 

separatrix  0( )M f  in the tether length 4000l m  ( 7.614 14 0a a



  - red, 

6.452 15 0a a



  - blue, 510a  - black). 

Note that without control of the tether length ( 0a  ) the Melnikov function 

 0 0 0( ) sin cos
C S

M f e I f I f    ,       (70) 

has simple zeros. We observe chaos as shown in Fig. 5. 

 

 

5. Poincaré sections 

 

The Melnikov functions are obtained for the linearised tether equation (37) by means of 

approximate heteroclinic solutions (59) and (60). The verification of the control coefficient is done 

by numerical integration of the basic tether equation (17) and the construction of Poincaré portraits. 

Figs. 7-9 show them for the following values of the control variable: 

60.461 10a a 

    (red), 50.545 10a a 

   (blue), 510a  (black) 

 

Fig. 7. Poincaré sections for 
7.614 14 0a a



   



 

Fig. 8. Poincaré sections for 6.452 15 0a a



   

 

 

Fig. 9. Poincaré sections for 510a   

 

Figs. 7-9 show the effectiveness of the control law (36) to suppress chaos of the tether. For the 

tether length of 4000 m, this occurs at 510a  . This value is almost 2 times higher than the value 

obtained by the Melnikov method (68). This is due to the approximations that have been made 

when using the Melnikov method. Note that the control coefficient a  is very small, of the order 

of 10-5, in both cases. 

The question of how the tether length changes when the control law (36) is implemented to 

suppress the chaotic behaviour of the tether has not been investigated. From Fig. 10 it can be seen 

that for the following values of the control parameter and the initial length of the tether 

510a  , 0 4000l m          (71) 

the tether length changes relative to the initial value with an amplitude of 1.5m and a periodicity 

of half the orbital period of Mars-Phobos. 



a 

 

b 

 

Fig. 10. (a) The phase portrait  
d

df


  and (b) the tether length history of true anomaly for the 

control parameter 510a   and the initial length of the tether 0 4000l m  

 

6. Conclusions 

 

In the framework of the restricted elliptic three-body problem, a tether anchored on a surface 

directly under the L1 collinear libration point is considered. The main findings of the paper can 

be summarized in the following way:  

1. Chaos in the behavior of the anchored tether due to the small eccentricity of the Mars-

Phobos orbit is detected.  



2. The existence of the chaotic behavior of the anchored tether is proved analytically by 

means of Melnikov method. 

3. The tether length control law for chaos suppression is proposed. 

4. By plotting Poincaré maps using the basic nonlinear tether equation, the effectiveness of 

the tether control law is verified. 
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