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Abstract—The motion of an uncontrolled spacecraft around its center of mass is considered, the restoring
acrodynamic moment of the spaceccraft being described by an odd Fourier series in the angle of attack with
the two first harmonics. The evolution of phase trajectories is studied on the basis of analysis of an action
integral, for which the analytical formulas are obtained in full elliptic integrals or elementary functions. The
moments of transition between various phase planc regions and boundary conditions for kinematic parame-
ters of motion are determined. For the cases of motion, when, intersecting the separatrix, the phase point may
fall into various oscillation regions, the formulas for determining the possibility of capture into any region

are found.

1. FORMULATION OF THE PROBLEM

The motion of an axisymmetric spacecraft around
its center of mass on the upper section of the atmo-
spheric reentry trajectory is considered. In this case,
the variation of the velocity of the center of mass, the
trajectory inclination angle, and the aerodynamic
damping may be neglected. The cases are investigated
in which the character of motion changes during the
reentry process: the rotational motion transfers into an
oscillatory one, and the oscillatory motion transfers “by
jumping” into the oscillatory motion with other ampli-
tude characteristics. The case of planar angular motion
of spacecraft with a sinusoidal angle of attack depen-
dence of the restoring moment is considered in [1].
This paper considers both planar and spatial motion
around a spacecraft’s center of mass with the angle of
attack dependence of the restoring moment having a
form of a biharmonical series. Such an angle of attack
dependence of the restoring moment is typical for
uncontrolled reentry vehicles of segmentally-conical,
blunted conical, and other shapes (Soyuz, Mars,
Apollo, Viking, and other reentry modules). The pres-
ence of the second harmonic in moment characteris-
tics causes the possibility of appearance of an addi-
tional equilibrium position of a spacecraft in the angle
of attack, i.e., an additional singular point on a phase
portrait of the system, which causes the appearance of
a series of new cases of transient modes.

The motion of a spacecraft with the biharmonic
moment characteristics around the center of mass
under the aforementioned assumptions is described by

the system with slowly varying parameters of type (2]
a+ F(a) =0,

F(a) = (G—Rcosa)(R-Gcosa)/sinsa ()
+asino + bsin20 = 0,

a=a(), b=>5b(z),

where o is the angle of attack; R = const, G = const are
projcctions of a kinetic moment vector on the longitu-
dinal axis of a spacecraft, normalized with respect to
the transversal moment of inertia; a(z), b(z) are’
moment characteristic coefficients; z is a slowly vary-:
ing parameter.

The energy integral of system (1) for constants’ a
and b has the form of

&’/2+W(a) = h, @
where
W(a) = j F(a)do = 0.5(G* + R®

- ZGRcosa)/sinza —acosa—-bcos’a.

The type of the system’s motion is determined by
the relation between quantities a, b, R, G, and h. In the
planar case of motion (R = G = 0), three types of phase
portraits take place.

(1) lal 2 2]b|. The phase portrait is analogous to &n
oscillatory system of the pendulum type and is
depicted for a >0 in Fig. 1 (for a <0, the phase pictaie °
is shifted by value n along the a-axis).




TRANSIENT MODES OF SPACECRAFT ANGULAR MOTION

(2) b> 0.5|al, b > 0. Some additional singular points
of saddle type appear on the phase portrait. These points
correspond to the values of the angle of attack
o = Farccos(-0.5a/b) + 2nn (n =0, £1, £2, ...), and
three regions of motion take place: a rotational and
two oscillatory ones (Fig. 2).

(3) |b] > 0.5]al, b < 0. The phase portrait for the
case a > 0 is shown in Fig. 3 (for a < 0, the phase pic-
ture is shifted by value m along the a-axis). Here some
singular points of center type correspond to the values
of the angle of attack o = tarccos(-0.5a/b) + 2nm
(n=0, 1, £2, ...), and four regions of motion take
place, a rotational and three oscillatory ones (Fig. 3).”

In the spatial case of motion, the presence of a
gyroscopic term in equation (1) stipulates the exclu-
sively oscillatory character of spacecraft motion. The
presence of the second harmonic in the moment char-
acteristics causes a possibility of appearance of some
singular point of saddle type on the phase portrait of a
system. In this case, there are three oscillation regions
(Fig. 4).

In connection with the change of a and b coeffi-
cients during the motion, the evolution of phase tra-
jectories takes place. As a result, these trajectories can
intersect separatrices and fall into various phase por-
trait regions, which is followed by qualitative changes
in the motion character. Figure 5 shows one of the
possible versions of an angle of attack variation in the
case of a spacecraft’s spatial motion around the center
of mass during descent.

Coefficients a and b, whose variability is associ-
ated with the atmospheric density variation during the
descent, may be represented in the form [2]

a=c,z, b=cy, (3)
—mSlp\Ve/ (21), ¢, = —mSlp,Vo/ (21),
z = exp(Br), B = AV,sinb|,

where m,, m,, are constant coefficients, S is the charac-
teristic area, / is the characteristic dimension, / is the
transversal moment of inertia of a spacecraft, Vis the
flight velocity, 6, is the trajectory inclination angle,
P, is the atmospheric density at the “atmosphere
boundary” at time r = t,, and A is the logarithmic den-
sity gradient in height.

To describe the motion of a system with slowly
varying parameters (1), we shall use the integral of
action written in the form of

Cq, =

amu
| odo, )
A rnin
where O, Onax are amplitude values of the angle of
attack (in a planar rotation, o;, = —T, Oy, = T; in pla-
nar oscillations, O, = —O4.x); & is determined from
the energy integral (2).
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Fig. 1. Phase portrait of the planar motion: |a| 2 2|b|.
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Fig. 2. Phase portrait of the planar motion: b > 0.5|al, b > 0.

Fig. 4. Phase portrait of the spatial motion.

For system (1), the equality / = const is valid for
the majority of boundary conditions to an accuracy of
O(elng) for times of the order of 1/€ [3], where € is a
small parameter characterizing the rate of the varia-
tion of parameter z. An exceptional set of initial con-
ditions, for which this evaluation is invalid, has a mea-
sure O(€"), where n 2 [ is any prespecified number.
The motion modes corresponding to the given initial
conditions are called the modes of spacecraft hovering
in the unstable equilibrium vicinity. These modes
were thoroughly investigated in [2] and are not con-
sidered here.
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Fig. 5. Character of spatial motion variation during the
reentry: (a) phase trajectories; (b) variation of the angle of
attack.

In this work, the analysis of transient modes of
motion is based on analytical expressions for the
action integral (4). The time moments corresponding
to the transitions between various phase portrait
regions are determined from the equality of the action
integral expression calculated along the separatrices
to the action integral value calculated from the initial
conditions of motion.

The value of the angle of attack at the boundary of
transition from one type of motion to another depends, in
the general case, upon the distribution of initial angles of
attack and angular velocities at the atmosphere bound-
ary, as well as upon the rate of change of a and b coeffi-
cients [2]. It is assumed that, for the time of motion
before reaching the transition boundary, the vehicle
makes several turns or oscillations, so that the angle of
attack may be supposed to be a random variable uni-
formly distributed within the range under consideration.
In this case, the angular velocity value & is determined
from energy integral (2).

In cases when, at intersecting separatrices, the phase
point may fall into various oscillation regions, the prob-
lem of choosing a motion continuation region arises. Let
separatrices /| and [, separate the inner regions of motion
A,, A, from the outer one, A, (see Figs. 2, 3, 4). For
choosing the motion continuation region A, or A,, the
probability P;, i = 1, 2, of capture into each is used. In
accordance with [4], this probability is defined as the
fraction of a phase volume of a small neighborhood
around the initial point of motion, which is “captured”
into the region under consideration in the limit when
a small parameter € — 0 and the dimension of neigh-
borhood § —= 0, € < & (the limit is first taken over €
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and then, over 8, where P, + P, = 1). The ratio of prob-

abilities is calculated by formulas
P, 6,
— T — 5
P, 6, &)

C@E g
ei - = azfzdt (l - ]92)’ (6)
L
E = H(p,q,z)—H(O,q*,z),

where H = p%2 + W(q, z) is the Hamiltonian; p = @,
g = o. are canonical variables; p = 0, g« = 0« are coor-

dinates of a singular saddle-type point on the phase
portrait (E = 0 at a singular saddle-type point and on
separatrices, E> 0 in A;, E<0in A, ,); f,= ¢ = Bz
Integrals (6) are calculated along the separatrices [,
and /,, parametrized by time ¢ of undisturbed motion
along these separatrices.

One should note that, since we consider the upper
section of the reentry trajectory for which f, > 0, the
quantities 0; will also be positive; therefore, a single
passage through the phase point separatrix from the
outer region into the inner one takes place [4].

Therefore, with the known initial conditions of
motion at the atmosphere boundary, one may trace the
phase trajectory evolution, find the times of transition
into each characteristic region of a phase portrait, and
determine the boundary conditions of motion for this
region.

2. THE PLANAR MOTION

The analysis of transient modes will be carried out
for three aforementioned cases of planar motion, the
phase portraits of which are shown in Figs. 1-3, and
also for an additional special case, whena =0, b#0.

(1) la| 2 2|b]. The phase portrait of a system is
depicted in Fig. 1 (for definiteness, we shall consider the
case of a > 0, since this condition can always be achieved
in equation (1) by a proper choice of the reference sys-
tem). The rotational motion of a spacecraft around the
center of mass is governed by the condition & >a —b. Let
us find the analytical expression for the action integral in
the rotational motion. We introduce a new variable
u = coso,; then the integral (4) for R = G = 0 takes the
form

1= 28, ™

where
f(u) = 2(1 = u®)(h +au + bu?). (8)

The result of integration of expression (7) depends
on the sign of a highest-order coefficient of polyno-
mial f{u) and on the types of its roots. Two of the four
1997
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roots of polynomial (8) are unambiguously real and
correspond to the values of 1. The two remaining
roots may be either real or complex-conjugated,
depending on the relation between quantities 4, a, b.
The following expressions for the action integral take

place:

For b > 0, h > a?/(4b) (two real and two complex-
conjugated roots),

I = n{hK(k)~lal(1 + 1/n)*[K(k)=TI(n, k)]
+b[K (k) + (E(k) — (1 + m))TI(n, k))/ (K> + 1))},

where K(k), E(k), TI(n, k) are full elliptic integrals of
the first, second, and third kind; k = [0.5 — (h - b)/(pr)]'?
is the modulus of elliptic integrals, n = (r — p)*/(4pr),
N =8/(pr)"%; p, r=[2(h ta+ b)]"2.

For b > 0, h = a*/(4b) (all roots are real, two roots
being equal to each other, the modulus of elliptic inte-
grals k = 0),

9)

[ = 2na/ J2b. (10)

Forb >0, [a¥(4b)]2h>[a-bland b<O0,h>a-b
(all roots are real),

- n{h.K(k) + a[(l + %)K(k) - (2 + %)H(n, k)}

b[‘_i&t'_l)_l((kng—(ﬁ"—)E(k) (1n

n n(k +n)
200 +m)2(2k*+n  1-2(2+n)
¥ n’ (k2+n * I+n )H(rl,k)] }
where k = [2(p - NI((p = D1 + M2, n=2(@p - 1),

n=8/2b(p — DA + N3 p, r = —al(2b)  sgn(b) X
[(a/(2b))* — hib])'">.
For b =0, we have a particular case of motion with

a sinusoidal moment characteristic, and the action
integral is determined by the formula

I = 4J2(h+a)E(k), (12)

where k = [2a/(h + a)]"2.

The transition boundary of rotation into oscilla-
tions is described by the h = a — b condition (all roots
of polynomial (8) are real, two roots are equal to each
other, the modulus of elliptic integrals k = 1). At the
transition boundary, at time ¢ = f,, the following
expressions for an action integral, which is taken
along the separatrices, are valid:

oy = 42bg)l fusx—1 +uyarctan( [1/(uy - 1))],
for b>0, (13)
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+uIn((1 + /u*+1)/JZ)], for b<O0,

](2) = 8 a(z), fOl' b = 0, (15)
where ux = |al/(2b)| = |m,/(2my)|.

Using formulas (13)—(15) and taking into account
the constancy of an action integral, I, = I;), one can
determine the value of coefficients b and a at time ¢, in
terms of initial conditions of rotational motion:

boy = {1/l Jux—1

(14)

(16)
+ugarctan( [1/(uy —1))1}Y/32 for b>0,
2) & = —{1 1)/[ Uy +
b ( ,/ an

+ugIn((1+ /u*+1)/ﬁ)]}/32 for b<O0,

ag = 14,/64 for b = 0. (18)

Here the action integral /;, is calculated from the ini-
tial conditions of motion by using one of formulas
(9)—(12). In the case when, at the atmosphere boundary,
agy and by, coefficients are essentially small as com-
pared to the angular velocity 0.;), the action integral /,
can be determined by the well-known formula [2]

The time corresponding to the moment of transition of
rotation into oscillations is determined from expres-
sions (3) by using formulas (16)—(18),

t, = (In[bay/c,)/B), (20)
or
t, = Inlay/c,1/B. : 2n

One should note that, according to equalities (3), coef-
ficients a and b in the case b # 0 are related by the
equality a = b(m,/m,).

Let us determine the boundary conditions for the
angle of attack and the angular velocity. We suppose
that, for the time of rotational motion ¢, - ¢, the vehi-
cle performs several turns. Then the angle of attack
oL = 0, corresponding to the time ¢ = ¢, may be consid-
ered to be a random variable, uniformly distributed in
the range from -7 to 7 (to an accuracy of period 2m). For
the angular velocity @, taking into account the
energy integral (2) and equality hg) = ap) — b), we
have the formula

Oy = sgn(Gy)[2a(1 + cosoyy)
) n” (22)
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(2) b>0.5|al, b > 0. The phase portrait is shown in
Fig. 2. Coefficient a may take both positive and nega-
tive values. The h > a?/(4b) condition corresponds to
the rotational motion of a spacecraft around the center
of mass. The action integral in the rotational motion is
determined by expression (9), since, in this case, two
roots of polynomial (8) are real and two others are
complex-conjugated.

The h = a%(4b) condition corresponds to the
boundary of transition of rotation into oscillations. At
the transition boundary at time ¢ = t,, the action inte-
gral, taken along the separatrices, has the form

Iy = 42b)[sino, + (0.5T — ay)cosay], (23)

where ox = arccos(-0.5a/b).

Taking into account that [, = [;,, we determine
from equality (23) the value of coefficient b at time ¢,
through initial conditions of the rotational motion

by = [/ (sino, + (0.5T — oty ) cos 0y ) 1°/32. (24)

The time corresponding to the moment of transition of
rotation into oscillations is determined by formula
(20).

Since at 1 > 1, the vehicle can oscillate with respect
to one of two stable positions of equilibrium in the
angle of attack a = 0 or . = =, let us determine the
probability of falling into these oscillation regions.
We denote by P, the probability of falling into the
vicinity of the angle of attack value o = 0; by P,, the
probability of falling into the vicinity of o =, where
P, + P, = 1. After appropriate calculations by formulas
(5) and (6), we have

P, 1 — o, cotoy
P, 1+ (m—o0y)cotoy

(25)

As seen, the value of the probability of the vehicle
falling into any oscillation region is determined only
by the value of an unstable position of equilibrium in
the angle of attack o = otx.

Let us determine the boundary conditions for the
angle of attack and the angular velocity. The angle of
attack o = oy, corresponding to the time t = 1, will be
assumed to be a random variable uniformly distrib-
uted in the range from —0lx to Olx or in the range from
O to 21 — ox. The probability of falling into these
ranges is determined by formula (25). Taking into
account the energy integral (2) and the equality h =
a*(4b), we have for the angular velocity @, the
expression

Q) = Sg"(a(l))[za(g)cosa(z),
2 2 12
+2b;)c08" 0y + A/ (2b)) ], or (26)

Oz = sgn(oyy,) 2b(2)'cosa(2)—cosa*,,

ASLANOV, TIMBAY

where o« = arccos(-0.5a/b).

(3) |b] > 0.5}al, b < 0. The phase portrait of a sys-
tem is depicted in Fig. 1 (for definiteness, we consider
the case of a > 0, since this condition can always be
achieved in equation (1) by a proper choice of the ref-
erence system). The rotational motion of the space-
craft around the center of mass corresponds to the
condition h > a — b. The action integral in the rota-
tional motion is determined by expression (11), since
in this case all roots of polynomial (8) are real.

The h = a — b condition corresponds to the bound-
ary of transition of rotation into oscillations with
respect to the unstable position of equilibrium o = 0.
At the transition boundary at time t = t,, the action
integral, taken along the separatrices, is determined
by expression (14), where, in this case, ux = cosOx =
—0.5a/b. The value of coefficient b at time ¢, is deter-
mined in terms of the initial conditions of rotational
motion by equality (17). The time corresponding to
the transition of rotation into oscillations is calculated
by formula (20).

At a — b > h > -a - b, the vehicle oscillates with
respect to the unstable equilibrium position a = 0. Let
us find the analytic expression for the action integral
in the oscillatory motion. In this case, all roots of
polynomial (8) are real, and one of them corresponds
to amplitude values of the angle of attack: u, =
COS Oy = COSOy; = COSQL,, and it is the upper limit of
integral (7). As a result-of integration, we have

I = n{hK(k)—a[K(k)—Z(l +n)I1(n, k)]

2n(1 +n)
—b| (1 +2m)K(k) - 2B pk
|(1+2mK (k) e O C)

2 2 2
231 +n)(k2+2k n+n )n(n’k)]}’
k“+n

where k =[0.5(1 + u)(1 — u, )/ (u;— 1)1 n =0.5(u,, - 1),
N = 4/[b(u,, — u)1"?; u;, u,, = —al(2b) £ [(a/2b)* - h/b]'""2.

One should note that expression (27) is a function of

parameters a, b and cosa,, (h= —acoso.,, — bcosz(x,,,)
and represents an implicit specification of the ampli-
tude of oscillations ,, in terms of a, b and the initial
value of the action integral.

The h = —a — b condition corresponds to the bound-
ary of transition from the region of oscillations with
respect to an unstable equilibrium position a = 0 into
one of two regions of oscillations with respect to sta-

ble equilibrium positions ox = tarccos(~0.5a /b). At
the transition boundary at time ¢ = t,, the expression

COSMIC RESEARCH Vol. 35 No.3 1997
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for an action integral takes the form
Is) = 4J—2b(3)[Jl — COS Oy

—cos, In((1 +Jl —cosa*)/Jcosa*)].

(28)

Taking into account that /; = /), we determine
from equality (28) the value of coefficient b at time 1,
in terms of the initial conditions of motion

bay = {14/ /1 —cosa,
, Q9
—cosOy In((1 + Jl - cosa*)/Jcosa*)]} /32,

The time corresponding to the given transition will be
determined from expressions (3) by using (29),

ty = In[b)/cy]/B. (30)
The amplitude of oscillations at time ¢ is found from
the energy integral (2), taking into account that h, =
—ag) — by = W(a,, ),

(€3

Now we determine the boundary conditions for the
angle of attack and the angular velocity. The angle of
attack o = 0,3, corresponding to time ¢ = t; is consid-
ered to be a random variable uniformly distributed in
the range from —a,, to O, or in the range from O to

a, . = arccos[2cosoty —1].

M)

a,, . The falling into mentioned ranges is equally

myy
probable, since the oscillation regions are equal and
symmetrical with respect to a singular saddle point
o =0, and we have in formula [5] 6, = 0,. Taking into
account the energy integral (2) and the equality A, =
—ag, — by, we have for the angular velocity O3, the

expression
2

. .2 1.
O3y = t[2a3)(cosoysy — 1) = 2bysin"oyy)] (32)

or

. .2 172
Oy = */-2b3)[2cosa(cosa sy — 1)+ sin ol .

(4)a=0,b#0. In this case, for b > 0, the phase por-
trait of a system has a form shown in Fig. 2, but in this
case, the oscillation regions with respect to stable
positions of equilibrium in the angle of attack o = 0
and o = © are equal and symmetrical with respect to
an unstable equilibrium position o = /2. For b < 0,
the phase picture is shifted by the n/2 value along the
Q-axis.

In "the case under consideration, the spacecraft
motion is described by the equation

(33)

For definiteness, we shall consider the case b > 0,
since this condition can always be achieved in equa-
tion (33) by a proper choice of the reference system.

o+ bsin2o0 = 0.
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The energy integral of equation (33) for constant b
has the form

&%/2 —bcos’a = h. (34)

The h > 0 condition corresponds to the rotational
motion of a spacecraft with respect to the center of
mass. We write the expression for an action integral in
the explicit form. Substituting relation (34) into for-
mula (4) and integrating the result, we obtain

I = 4.2(h+ b)E(K),

where k = [b/(h + b)]"2.

The h = 0 (k = 1) condition corresponds to the
boundary of transition of rotation into oscillations. At
the transition boundary at time ¢ = t,, the expression
for an action integral takes the form

Taking into account that /,, = [;), we determine
from equality (36) the value of coefficient b at time ¢,
in terms of the initial conditions of rotational motion,

ba = 15,/32, (37)
or, using formulas (34), (35), we have

bay = [61)/2 + by (1 - cos o ) HE(ky)T". (38)

The time corresponding to the moment of transition of
rotation into oscillations is calculated by formula
(20). .

Now we determine the boundary conditions for the
angle of attack and the angular velocity. The angle of
attack o = 0, corresponding to time ¢ = t, is consid-
ered to be a random variable uniformly distributed in
the range from —/2 to 1/2 or in the range from /2 to
3n/2. The falling into mentioned ranges is equally
probable in accordance with formula (25), since, in
this case, ax = 1/2. Taking into account (2) and the
equality i =0, we have for angular velocity

a(z) = Sgn(a(l))JZb(nCOSa(z).

(35)

3. THE SPATIAL MOTION

The phase portrait for equation (1) in the case of a
spatial motion is determined by the relation between
quantities A, a, b, R, and G. The qualitative analysis of
equation (1) shows that, if, inside the interval for the
angle of attack (0, m), the saddle point is absent in the
planar case of R = G = 0, then it is also absent in the
case of spatial motion irrespective of quantities R and
G. On the other hand, if, for R = G = 0, the saddle point
actually takes place (the case of b > 0.5|al, b > 0), then
its absence can be provided only by choosing suffi-
ciently high (in magnitude) and finite R and G values.
We analyze the case when the saddle point exists; then
the phase portrait of equation (1) has the form shown

‘in Fig. 4.
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Let us find the analytical expression for an action
integral in the case when the spacecraft is oscillating
in the outer region A, (Fig. 4). We introduce the vari-
able u = cosa,; then the integral (4) takes the form

I = J' {?_(—”:)d (39)
where
fu) = —2bu’ —2au® +2(b - h)u*
+2(a+GR)u+ (2h-G* - R, (40)

ul = COS(Xmin, u2 = Cosamax.

One should note that, in the case of motion inside the
outer oscillation region, the polynomial (40) also has—
along with the roots corresponding to amplitude values
of the angle of attack u; = cosQy;,, Uy = COSOU,—tWO
complex-conjugated roots: uy 4= Uy, tiw, and u, < uy <
u,;. Substituting polynomial (40) into the formula for
action integral (39) and integrating the result, one obtains

= n{hl((k) +a[AK(k)+v(1 +n)I1(n, k)]

+ b[(k2 Vi1 +n))K(k) + (M)E(k)
K+n @1

2 2
+(1+ n)(V a +k';)i” +2k) 27w)n(n, k)]
n

2
- ZOSd,[X,K(k) + V,’(l + n,‘)n(nia k)] }7
i=1
where k = [0.5(1 — {/D)]Y2, n = (§ - DY4E), 1 =
41269, X = (& — u)/(€ - 1), v =2&(uy — u) )IE2 - 1),

C = (uy — us)(uy — usg) + wh O = [(u) — up)* +

W2 2[(ut = g+ w2)2, € = [(ay = g + W2y -
Uy + w2, d ;= 05G FRAE n, =€ -1tu, F
Eu) 461 Fuy Fup +up)), A =E-E-11u, F
&u,), V|.2 = (l + &)/(] + & F u, F &u,) - 11'2.

Expression (41) is a function of parameters a, b
and oSOy, = U, since h = W(0,y,,), and represents an
implicit specification of a maximum value of the angle
of attack a,,, in terms of a, b and the initial value of
the action integral. In this case, the minimum value of
the angle of attack is o, = arccosuy.

The time of transition from an outer oscillation
region into one of inner oscillation regions, which are
separated by a separatrix, is defined by the time of
transition of complex-conjugated roots u; 4 = us, + iw
into real ones u; 4 = U3y = ux = cosOx, w = 0; in this
case, the modulus of elliptic integrals k = 1. Now we
obtain the formula for an action integral at time ¢ = ¢,
corresponding to the mentioned transition. In this
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~ case, polynomial (40) has the form

F(u) = =2b(u— ) (u—u)(u—uy)’,

and integral (39) is calculated in terms of elementary
functions as

Iy = J2by

3
X{ZJ(MI — Uy )(Uy —Uy) = ZC,-arcsinS,-},
i=1
Whemc, =U +llz+2U*,C2'3=(l ZFu*) (ul F l)(uzq: 1),

&y = (uy + uy = 2ux) luy — uy |, 8 3= [(uy F D(us —uy) +
(g F D)(us — )V (g = uy)(us F 1)

Taking into account the constancy of an action
integral I, = I, we rewrite expression (42) in the
form

42)

ba) = {l(l)/[zj(ul — uy)(Uy — U)
(43)

Coefficient b, is determined by a simultaneous solu-
tion of equation (43) with the determination of roots
of polynomial (40). Quantity 4 is determined from the
condition of transition of complex-conjugated roots
Uy 4 = Uyy T iw into real ones us 4 = usy = ux, w=0. The

time corresponding to the moment of transition under
consideration is calculated by formula (20).

Since the vehicle at ¢t > ¢, may continue its motion
in one of two inner oscillation regions A, or A,
(Fig. 4), we determine the probability of capturing
into these oscillation regions. Using formulas (5) and
(6), one obtains

P = Gy ) + (05 + /)

X(O.5n+arcsin8,))/(J(u,—u*)(u*~—u2) (44)

—(0.5¢, + m,/m,)(0.5m — arcsind,)),

Now we determine the boundary conditions for the
angle of attack and the angular velocity. The angle of
attack o = 0y, corresponding to time ¢ =1, is supposed to
be a random variable uniformly distributed in the range
from Olmin,,, 0 Ok OF in the range from 0tk to Oy, - The

probability of falling into the mentioned ranges is deter-
mined by formula (44). The angular velocity ¢, is
determined from the energy integral (2) taking into
account that quantity 4 is determined from the condition
of transition of complex-conjugated roots us 4 = uy £ iw
into real ones u3 4 = U3y = ux, w =0.
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Thus, we have investigated the transient modes of
motion of a spacecraft with a biharmonic moment
characteristic at the upper section of a trajectory both
ina planar and in a spatial case of motion. The analyt-
ical formulas arc found for an action intcgral,
expressed in terms of full elliptic integrals, and along
the separatrices, in terms of clementary functions.
Based on the latter, we determined the moments of
time corresponding to the transitions between various
regions of the system’s phasc portrait and thc bound-
ary conditions for kinematic parameters of motion.
For the cases of motion, when intersecting a separa-
trix, the phase point may fall into various oscillation
regions; the formulas are found for determining the
probability of capture into any region.
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