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Abstract—Angular motion at atmospheric entry is studied in the paper for a spacecraft with a bi-harmonic
moment characteristic. Special attention is given to the case when the spacecraft possesses two stable balanced
positions, and, hence, it can oscillate in dense atmospheric layers in the ranges of small or large angles of attack.
The averaged equations of spacecraft motion are derived, which allow one to increase the speed of calculations
by several orders of magnitude. A real example is presented, which concerns a spacecraft specially designed for

descending in the Martian atmosphere.
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1. FORMULATION OF THE PROBLEM

It is agreed that one of main causes, resulting in
anomalous behavior of spacecraft at atmospheric entry,
is the parametric resonance [1, 2]. It arises in the pres-
ence of a small mass-inertial and aerodynamic asym-
metry, when the motion relative to the center of mass
depends on two angular variables: the spatial angle of
attack and the angle of spinning. When the frequency of
oscillation of the angle of attack and the average angu-
lar velocity of spinning become multiple to the ratio of
prime integers under an effect of disturbances, the res-
onance arises. The resonance, as a phenomenon of con-
siderable change in the amplitude of oscillations, can
also arise in the absence of asymmetry, when the
motion depends on a single angular variable, the spatial
angle of attack, while the aerodynamic restoring
moment coefficient m,(t) vanishes at three points on
the segment [0, «t]. In this case, on the phase portrait

o = a(o) one can observe three regions separated by a
separatrix [3]. Under an effect of disturbances, such as
dynamic pressure variation at spacecraft descent in the
atmosphere, the phase trajectory can intersect the sepa-
ratrix, thus transferring from one region to another,
which is accomparnied by a jump change of the oscilla-
tion amplitude and represents a resonance [4]. For
descent in the rarefied Martian atmosphere the blunt-
shaped bodies of small elongation are used, which pro-
vides for effective drag. Such bodies, depending on
their mass configuration, can possess, along with two
balancing positions of the angle of attack: o* = 0, =,
also the third equilibrium position: o* € (0, 7).
Figure 1 presents the segmental-conic body and depen-
dencies of a restoring aerodynamic moment coefficient
my(at) on the spatial angle of attack for various posi-
tions of the center of mass measured from the body’s
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nose (x; = xz/l, where [ is the characteristic size of a
body), found using the Newton’s shock theory.

To approximate the restoring moment coefficient we
make use of a bi-harmonic dependence of the form

(L.1)

For the considered class of spacecraft the position o0 =0
is stable; therefore, the derivative of the restoring
moment coefficient with respect to the angle of attack
at this point is negative

my(Q) = asino + bsin20.

(acosa+2bcos2a)|, _,<0,

or
2b<-a. (1.2)

And if there exists an intermediate balancing position
on the interval (0, 1), then

my(0) = asino + bsin2a
= sina(a +2bcosa) = 0,
which holds true, if
[2b] > |al. (1.3)

It is obvious that inequalities (1.2) and (1.3) are valid
simultaneously at b < 0. Note that the dependencies
my(0) presented in Fig. 1 satisfy conditions (1.2) and
(1.3).

The problem is stated to demonstrate the possibility
of appearance of resonances for axi-symmetric bodies
intended for entering the Martian atmosphere, to find
the motion stability conditions, to obtain the averaged
equations of disturbed motion, and to construct the pro-
cedure for calculating the upper and lower estimates of
motion parameters with the use of the averaged equa-
tions.
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Fig. 1. The coefficient of the aerodynamic restoring moment versecs the spatial augle of attack at varicus positions of the center of

mass.

2. EQUATIONS OF MOTION
AND THE SYSTEM’S PHASE PORTRAIT

We write the equations of three-dimensional motion
of an axi-symmetric body at descent in the atmosphere
in the following form [2]:

G (G—Rcosa)(3R— Gceosal)
sin" o

-My(a,z) = -m(2)a,
R = —em ()R = e®y(2),
G = -&{m(2)G +[m,(z) -m(2)|Rcosa}
= edg(0, 2),

2.1

V= —cm((x)%g—gsine = edy(a, 2),

: cos9
0 =- V(g

v2
—RP+H

) = e®y(a, 2),

H = Vsind = e®y(0, 2),
where z=(R, G, V, 0, H) is the vector of slowly varying
parameters; ¢ is the spatial angle of attack, € is a small
parameter, R and G are, to an accuracy of a multiplier,
the projections of the angular momentum vector onto
the longitudinal axis and onto the velocity direction,
respectively; V is the spacecraft motion velocity, 6 is
the trajectory inclination angle, H is the flight altitude,
g is the acceleration of gravity, ¢, () is the drag force
coefficient, ¢ = pV?/2 is the dynamic pressure, p is the
density of the atmosphere, S is the middle cross section
area, m 1is the spacecraft mass, M, = m,gSL/I is the
restoring moment to an accuracy of a multiplier (/ is the

transverse moment of inertia of the body, and L is its
characteristic size), Rp is the planet’s radius; em,(z),
em,(z), and €m.(z) are the projections of a small damp-
ing moment onto the axes of the right-handed coordi-
nate system Oxyz chosen in such a manner that the Ox
axis is directed along the spacecraft’s axis of symmetry,
the Oy axis lies in the plane formed by Ox and velocity
vector V.

It should be noted that the right-hand sides of the
equations of system (2.1) can also be written in a more
complicated form, such as that in [1, 2]. However, of
principal significance is here the circumstance that the
right-hand sides are functions of only one “fast” vari-
able, the spatial angle of attack o.. We present the sys-
tem (2.1) in a short-cut form:

o+ F(a) = —em ()0, Z=¢ed(0,z). (2.2)

Disturbed system (2.2) for € = 0 is reduced to the
undisturbed system with a single degree of freedom.
The evolution of motion parameters proceeds under an
effect of disturbances arising due to small damping
moments and dynamic pressure variability. Now we
should find the relationship between the presence of
three balancing positions of a bi-harmonic characteris-
tic (1.1), under conditions (1.2) and (1.3), and the exist-
ence of stable and unstable equilibrium positions on the
phase portrait of an undisturbed system obtained from
(2.2) fore=0:

&+ F(a) = 0, (2.3)
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where

Flo) = (G—Rcosa)(R—-Gcosa)

sin’o,
—Asino — Bsin2a, (2.4)
aSL

= — B = —qg.

Equation (2.3) has the integral of energy

/2 +W(a) = E, (2.5)

(2.6)

where W,(at) = (G? + R - 2GRcos )/[2sin*a], W(o) =
Acosa + Bcos?o.

There is one-to-one correspondence between the
values of variable u = cos. on the segment [-1, +1] and
the values of angle o on the segment [0, rt]. With regard
to replacement u = cos integral of energy (2.5) can be
written as

W21 = u’)] + W (u) + W,(u) = E, 2.7)

where Wg(u) = (G? + R? - 2GRuw)/[2(1 — u?)], Wi u) =
Au + Bi?.

W(a) = J'F(a)doc = W, (o) + W,(0),

Now let us present (2.7) as follows: W’ —flu)=0,

where
f(u) = 2(1 —u>)(E — Au— Bu®)
+2GRu—-G* - R*.

The character of a phase portrait of the system
described by equation (2.7) is determined by the form
of potential function W(u). In particular, the number
and position of extreme points of this function deter-
mine the number and type of singular points. The stable
point of the center type corresponds to the minimum,
and the unstable point of the saddle type to the maxi-
mum. The behavior of function W(u) = W,(u) + W,(u)
for various combinations of R, G, A, and B parameters
was studied in [2]; we present here only the results of
this study. The potential function W(u) has no inflection
points on the (-1, 1) interval, provided that

B>-[ min (0.5W;(u))] = B*,

(2.8)

2.9)

since its second derivative W"(u) = W, (u) + W, (1)
with respect to variable u is non-negative. This implies
that there is no saddle singular point on the phase por-
trait. According to (2.9), quantity B* is always negative.
For R = G = 0 function W;,' (u) degenerates; therefore,
B* =0, and condition (2.9) assumes the form of B > 0.
The saddle point will also be absent at a relatively small

value of coefficient b as compared to a (the motion
close to the Lagrangian case). Really, if

|b| <0.5]al, (2.10)
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Fig. 2. Phase portrait.

then function W, () has one and the same sign through-
out the interval, and, hence, the derivative W'(u) =
W; (1) + W, (u) vanishes at a single point, and function
W(u) has a single extremum (minimum). Condition
(2.10) contradicts condition (1.3), and, if condition
(2.9) is not met, function W(x) can have two minima
and one maximum on the (-1, 1) interval, which corre-
sponds to the presence of an unstable singular point of
the saddle type on the phase portrait. It is obvious that
the aforementioned situation arises upon satisfying the
condition

W' (1) W' (t1,) < O, 2.11)

where ux; and ux, are the roots of the equation W"(u) = 0.

When condition (2.11) is met, the phase plane is
divided by a separatrix into three regions: the outer
region A, and two inner regions A; and A,. If £ > W,

where W, is the value of W(u) at a saddle point u = u,,

then the motion proceeds in the outer region A (Fig. 2).
In the opposite case (E < Wx) the motion can occur in
any of innner regions A; or A,, depending on the initial
conditions. The equality £ = W, corresponds to the

motion along the separatrix.
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3. STABILITY OF PERTURBED MOTION

Under the action of perturbations, arising during
spacecraft descent in the atmosphere, the phase trajec-
tory, while remaining in one of the regions, either
moves apart from a separatrix or approaches it. In the
first case the trajectory is “immersed” deeper into a
given region, and in the second case it is “pushed out”
from it. Accordingly, we will refer to regions Ay, A, and
A, as stable or unstable. The motion can start either in
outer region A, or in any of inner regions A, and A,. If
the region in which the motion has begun is unstable,
the phase trajectory intersects the separatrix in some
finite time. Obviously, two situations can take place at
the separatrix intersection instant: 1) two regions are
unstable and one is stable, and 2) on the contrary, one
region is unstable and two are stable. In the first case the
motion continues in the stable region only, and in the
second case the further behavior of a trajectory depends
on the current phase of the angle of attack. If the phase
is not determined, to Tall into any region is of a random
character. The author of [4] proposes to use, for choos-
ing the continuation of motion, the concept of probabil-
ity of “capture” into each region. This probability is
determined on the basis of calculating the areas of
regions encompassed by a separatrix. Analytical find-
ing of these areas is reduced to calculation of improper
integrals.

In order to estimate the stability of the regions it is
not necessarily to calculate their areas. Under the action
of small perturbations the average value of the total
energy E slowly changes, as well as the value of poten-

tial energy W, , calculated at the saddle point u = u,.
For determining the stability it is sufficient to make use

of time derivatives of mentioned functions [2]. The
inner region (A, or A,) is stable, if the following condi-
tion is satisfied near the separatrix:

E(2) < Wuy, 2). G.1)

For the outer region A, the stability condition is as fol-
lows:

E2) > W(uy, 2). (3.2)

The value of function (2.8) at the saddle point i = u,,
is equal to:

fe=flg2) = 2(1 —uz)[E@) - Wy, 2)1. (3.3)

In the neighborhood of the separatrix E (z) — W(uy, z) =
0(¢), uy (z) = O(g), and the differentiation of function
(3.3) with respect to time, to an accuracy of quantities
of the order of €2, gives the following result:

Fr = 201 = u2)E@) - W(ug, 2)]. (3.4)
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It follows from (3.4) that the conditions f %+ <0 and

f« >0 correspond, respectively, to conditions (3.1)
and (3.2) [3]. Indeed, if in the inner region (A, or A,) the
value of polynomial f{(u) at point u, decreases, then this
region is stable. In the opposite case the region is unsta-
ble, and the phase trajectory will not fall into it at any
initial conditions. Similarly, the outer region A, will be
stable or unstable with increasing or decreasing fx,
respectively.

It follows from energy integral (2.5) that the total
energy is equal to potential one E = W(a,,), calculated
for the amplitude value of the angle of attack o = o,

(for & =0). It is obvious that
E(z) = W(a,, 2), (3.5)

where o, and z correspond to the averaged equations.
We suppose that the averaged equations of motion cor-
responding to system (2.2) are obtained. Let us calcu-

late the derivatives E(z) and W(OL*, z) in virtue of the
averaged equations:

E(z) =

- (‘xm+_
oo, _, 0z

= F(ay, )6+ 2
0z

and

. w .
W(o, 2) = %—Z- Z.

o= Oy

Now we introduce the criterion which determines sta-
bility of the perturbed motion in the separatrix neigh-
borhood:

™

Z, (3.6)

Oy

A= F(0y, 2)60+ 2
0z

and then, finally, we can write the stability conditions:
for the inner regions A, and A, (3.1)

A<O (3.7)
and for outer region A (3.2)
A>0. (3.8)

4. AVERAGED EQUATIONS AND MODELING
OF THE PERTURBED MOTION

The stability criterion A is a function of the ampli-
tude value of the angle of attack; therefore, it is expedi-
ent to write the averaged system for this angle directly.
In addition, the numerical modeling of the perturbed
motion is convenient to be performed with the use of
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the averaged equations. For the known solution of o, @,
unperturbed system (2.3) [2], we write, by means of I = J‘ cosado I = j cos ado 4.2)
V.M. Volosov’s method [5] for perturbed system (2.1), 37 Gsina 4 Gsino, )
the averaged equations, having chosen the maximum i O
angle of attack as an amplitude o, a, a,
coso.do. cos ada
[y - [eode g [ covods
. 2¢ 2 2 o
& = e )[mzll + (RPm, + G*m))I, o o
" The integrals /; can be reduced to complete normal
-2GRmyl; — Rz(mx -m),+ (A s+ B,l5)®, elliptic Legendre integrals of the first, second, and third

kind [6]. For this purpose, depending on the form and
position of roots of the polynomial f{u) (see Table), one
should make use of one of changes of variables [2]. If

G —Rcos(a,,) there exist four real roots, it is necessary to use the
- 2 (m,—my)RIs chan
. ) P ge
sin“(a,,)
2
COSOL = U = uy(uy — uz) + us(uy _“2)(325 Y, 4.3)
e [R-Gceos(a,) G - Rcos(a,,) (up —uz) + (1, — uy)cos’y
_F(OL )[ — mR+ ———m,G
m sin“(c,,) sin“(a,,) and if there are two real and two complex-conjugate
roots, then
(uy + u, &) — (uy —u &) cosy
+ (A,cos(0,,) +chosz((xm))cbq} CosQL = u = (T8I Deosy 4.4)

The following designations are introduced in formulas

. ’ (4.2) and (4.3): u; = COS Oy, Uy = COSCpyin, U3, Uy, and

R=emR, G-= e[me+7,(mx—my)R15}, uy, * iv are the roots of the polynomial flu); § =
COSY,1/cO8 X, tany, = (u; — uzs)/ v, tany, = (uy—uzy)/v.

When calculating integrals (4.2) it is convenient to
Q,

V= 2 '[ Col)do |gS esiné make use of the following expression
Ta N2AE-W() ™ 4.1 do _ dy

= ey (Q,, 2), o BA/1—Kk’sin’y

which is obtained from (2.8), (4.3), and (4.4). The val-
V2 ues of coefficients k, B, and period T are determined
(g “Ra H) = £Dy(2), depending on the type of roots:
P

H = Vsin® = e®y(z),

cos6

0= v

—four roots are real: change (4.3)

_ () — uy) (uy — uy)

k - ’
d s (uy = uz)(uy — uy)
ed (o, 2) = ¢ = —(pV'/2)
" dt 1 2K (k
2 B= 3B —u)—wy), T =2
= g[pVDy(a,, 2) + pyPyu(2)V/2],
JA AB —two roots are real and two ones are complex-con-
A, = dg o = g’ jugate: change (4.4)
Here
o o K = 1(1 (1t = 1) (1, — 3g) + v J
m m - 2 - )
I= [oda, 1= [ 22 S =)’ + v (1~ us) + )
asin“a

Cinin Qnin
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Positions of the roots of polynomial f{u) (2.8)
Variant Region uy, Uy U, Uy Type of roots Formulas
R1 A, uy <1 Uy < uz<-—1 uy, Uy, Uz, uy —real roots (4.3)
R2 A] u2>'—] M3>u4>l
R3 A, uy<up |-l<uy<uz<uy<u <l
R4 A “l<uy<u <uy<us;<l
Co Ay Uy < Uy < Uy uy, uy — real roots, 4.4)
U3 4= Uy + IV — complex-conjugate roots
Cl1 A2 U3y < Uy
C2 Al U3y > u

B = Jo2BI((1) — us)* + v*)((uy — ) + vH1'",

4K (k)
T = 152
B

where K(k) is the complete elliptic integral of the first
kind.

From the point of view of calculation, numerical
integration of averaged equations (4.1) for any region
differs only in numbering the roots of the polynomial
flu), and in formulas (4.2) for calculating the integrals
I;. In addition, the use of averaged equations (4.1)
allows one to increase by an order of magnitude the
speed of calculation as compared to complete system
(2.1).

On the basis of performed analysis of the disturbed
motion of a body with a bi-harmonic moment charac-
teristic, one can offer the following procedure of calcu-
lating the upper and lower estimates of motion param-
eters with using the averaged equations. Note that, if on
the phase portrait there exist three regions: A, A,, and
A,, then in the separatrix neighborhood three versions
of mutual position of roots of the polynomial f{is) are
realized (see Table): CO, R4, and R3, respectively. The
numerical integration of averaged equations (4.1) per-
formed from the initial point, belonging to one of the
regions, till the separatrix intersection instant, which is

determined by arising transition version, either R3—-CO
or CO-R4. Then, criterion A is calculated by formula
(3.6) for each of regions Ay, A, and A,, and their stabil-
ity is estimated in accordance with conditions (3.7) and
(3.8). Some obvious facts should be emphasized here.
If the outer region A, is stable, then regions A, and A,
are unstable, and vice versa. The transition from region
A, into region A, and from region A, into A, is possible
only through A,. The region, from which the entering to
the separatrix took place, is always unstable; therefore,
there can be either one or two stable regions. In the first
case, the stable region is chosen for further continuation
of integration; in the second case the problem has prob-
abilistic character, and for obtaining the upper and
lower estimates of the solution the calculation is per-
formed twice for each stable region. In this case, when
using the complete system of equations (2.1), it is nec-
essary to perform stochastic modeling with a great
number of calculations of trajectories, which requires
considerable expenses of computer time.

As an example, we consider the uncontrolled descent
in the Martian atmosphere of a hypothetical spacecraft,
whose geometrical dimensions are presented in Fig. 1,
the mass equals 69 kg, and coefficients a = 0.657, b =
—1.152. The damping moment will be disregarded: m, =
my,=m,=0.The descent is carried out with the following
initial conditions: o, = 165°, Ry =0.2 s™!, G, = 0.7 7!,
Vi = 5000 m/s, 6, =—-15°, Hy= 1.2 - 10> m. The motion
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Fig. 3. Transition from region AO into A1.
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Fig. 5. Amplitudes of jscillations of the angle of attack.
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Fig. 7. Comparison of the results of integration for the case
of transition from AO into A2.
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Fig. 4. Transition from region AO into A2.
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Fig. 6. Comparison of the results of integration for the case
of transition from A0 into A1.

begins in the outer region A, the transition through the
separatrix occurs at ¢, =22.2 s, the values of criterion
A for various regions are equal to: A% = -0.339,
AAD = -0.446, AA? = _71.36. The outer region A, is
unstable, and regions A, and A, are stable. Further
motion is possible either in region A, (Fig. 3), or in A,
(Fig. 4).

Figure 5 shows the dependences of amplitude values

of the angle of attack on the descent time for two possi-
ble cases of motion: A; —= A, and A, — A,.

Figures 6 and 7 give the comparison of the results of
numerical integration of initial system (2.1) and of
averaged system (4.1).
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