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a b s t r a c t

We study the pitch motion dynamics of a rigid body in a resistant medium under the influence of a
biharmonic torque a sin θþb sin 2θ. Such nutation angle dependence of the biharmonic aerodynamic
torque is typical for uncontrolled re-entry vehicles of segmentally conical, blunted conical, and other
shapes (Soyuz, Mars, Apollo, Viking, Galileo Probe, Dragon). The presence of the second harmonic in the
biharmonic torque is the cause of additional unstable equilibrium. In case of spatial motion a small
perturbation is a small difference of the transverse inertia moments of the body. In this case, two Euler
angles θand ψ are the positional coordinates, and we can observe a chaos. In case of the planar motion
the body is perturbed by a small aerodynamic damping torque and a small periodic torque of time. We
show by means of the Melnikov method that the system exhibits a transient chaotic behavior. This
method gives us an analytical criterion for heteroclinic chaos in the planar motion and an integral
criterion for the spatial motion. The results of the study can be useful for studying the chaotic behavior of
a spacecraft in the atmosphere.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of rotating bodies is a classic topic of study in
mechanics. In the eighteenth and nineteenth centuries, several
aspects of the motion of a rotating rigid body were studied by such
famous mathematicians as Euler, Cauchy, Jacobi, Poinsot, Lagrange,
and Kovalevskaya. In some cases, for the study of dynamical
systems it can be useful to use elements of mathematical phe-
nomenology and phenomenological approximate mappings for
obtaining approximate differential equations and approximate
solutions in local area around singular points, linear and non-
linear approximations [1–2]. However, the study of the dynamics
of rotating bodies is still very important for numerous applications
such as the dynamics of satellite gyrostat, spacecraft, re-entry
vehicle, and the like. Note that only some of the papers are
devoted to the modern problem of rigid body dynamics. So in an
independent way, Sadov [3] first obtained sets of action-angle
variables for the rotational motion of a triaxial rigid body. Deprit
and Elipe [4] used Sadov's variables to convert directly the Serret–
Andoyer variables [5–7] into action-angle variables, thereby mak-
ing Hamiltonian dependent on only two momenta. Akulenko et al.
[8] considered perturbed motion about a fixed point of a dynami-
cally symmetrical heavy solid in a medium with linear dissipation
and obtained an averaged system of equations. Yaroshevskii
created fundamentals of the dynamics of re-entry vehicles, which
were used for designing the Soviet spacecraft such as Vostok, Souz,

Luna, Venera and Mars. Yaroshevskii wrote two books in Russian
and a large number of articles on this problem the latter of which
[9–12]. Aslanov [13] studied the motion of a rotating rigid body in
the atmosphere of a planet under the action of a restoring torque
which depends on time and the angle of nutation. The rigid body
(re-entry vehicle) intended to descend into the atmosphere
usually has a small aerodynamic and dynamic asymmetry, for
example, it has a small relative difference between the transverse
moments of inertia [14]. In this case, the angular motion depends
on two Euler angles: the nutation angle θ (spatial angle of attack)
and the angle of spin ψ . If the frequency of change of these angles
becomes multiple to the relation of simple integers, then a
parametrical resonance occurs [14]. Holmes and Marsden applied
the methods of chaotic dynamics [15] for solving a similar
problem. Holmes and Marsden considered the problem of spatial
motion of the heavy rigid body with a small dynamic asymmetry
when the torque of gravity was proportional tomθ � sin θ. Similar
tasks have also been discussed in the papers [16–19].

This paper focuses on the study of the motion of a blunt rigid
body in an atmosphere which is under the action of a biharmonic
aerodynamic torque a sin θþb sin 2θ. The purpose of the paper is
the finding of the conditions of existence of chaos in motion in the
slightly asymmetrical rigid body in the atmosphere under the
action of small perturbations and determining the influence of
chaos on the behavior of the rigid body.

The paper is divided into five sections. In Section 2 the
statement of the problem is given. In Section 3 the spatial motion
of the slightly asymmetrical rigid body about its center of mass in
an atmosphere is considered. An aerodynamic torque on the body
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is determined by the biharmonic dependence on the angle of
nutation. Hamilton's canonical equations are derived and condi-
tions are found for the existence of unstable equilibria of the
system. Homoclinic orbits are determined in an analytical form
and Melnikov function is constructed in the modification of
Holmes and Marsden [15]. Numerical simulation of a chaotic
behavior of the system completes the section. In Section 4 we
find an exact analytical representation of the Melnikov function
for the planar motion, if the small disturbance is determined as the
sum of a periodic time function and a dissipative torque. The
analytical results given by the Melnikov method have been
confirmed by a good agreement with direct numerical calculations
in the construction of Poincaré sections by using the fourth-order
Runge–Kutta algorithms. In Section 5, it is concluded that the
biharmonic system will exhibit a lot of chaotic motions due to the
combined physical parameters with external torques that are
dissipative and periodic or due to the small dynamic asymmetry.

2. Problem formulation

Let's determine a place of the considered problem in the general
problem of rigid body dynamics and also note an analogy to the
motion of a heavy rigid body and the rigid body in the resisting
medium (atmosphere of a planet). Gravity and aerodynamic torques
acting on the sphere with a displaced center of mass in the resisting
medium are proportional to sin θ (Fig. 1a and b). The shape of the
Soviet spacecraft Vostok was a sphere. On board Vostok, Soviet
cosmonaut Yuri Gagarin made history on April 12, 1961, when he
became both the first person in the world to enter space and to
return to Earth. However, the modern re-entry vehicles have a
blunted conical shape (Apollo, Galileo Probe, Dragon), it is to
provide efficient braking in the atmosphere. For these re-entry
vehicles (Fig. 1c) the aerodynamic torque is well approximated by
biharmonic dependence on the nutation angle

mθ ¼ a0 sin θþb0 sin 2θ ð1Þ
However, the dependences on the angle of nutation (1) can have
three positions of equilibrium, and one of them is unstable. The
stable position at the points θn ¼ 0 and θn ¼ π; and unstable in the
third intermediate point θnA 0; πð Þ [13,20,21]. The presence of the
second harmonic in (1) causes the possibility of appearance of an
additional equilibrium position – saddle point on a phase portrait.
For the considered spacecraft position θ¼ 0 is stable; therefore, a
derivative of the function mθ ðθÞ with respect to the angle θ at this
point is negative

dmθ

dθ

����
θ ¼ 0

¼ a0 cos θþ2b0 cos 2θ
� ���

θ ¼ 0o0 ð2Þ

or

2b0o�a0 ð3Þ
And if there exists an intermediate position of equilibrium

inside the interval of ð0; πÞ, then
mθðθÞ ¼ sin θ a0 þ2b0 cos θ

� �¼ 0 ð4Þ
which holds true, if

2b0
�� ��4 a0

�� �� ð5Þ

It is obvious that (3) and (4) are valid simultaneously when
b0o0. Note that the dependence of mθðθÞ given in Fig. 1 satisfies
conditions (3) and (4). The stable position occurs not only in the
point of θ¼ 0, but also in the point of θ¼ π when (3) is fulfilled
for the re-entry vehicle. The motion of the spacecraft in a
neighborhood of θ¼ π cannot be allowed, because in this case
the back part of the body will move towards an approach flow. A

simultaneous existence of the unstable equilibrium positions and
small perturbations can lead to chaos.

The role of small perturbations may play, for instance, a small
dynamic asymmetry of the body or a small external torque. The
rigid body with a triaxial ellipsoid of inertia possesses a small
dynamic asymmetry, if its transverse inertia moments differ little
from each other. Then the small dynamic asymmetry is written as

ε¼ I2� I1ð Þ=I1 ð6Þ
where ε is a small parameter.

Small disturbance torque is represented as the sum of the
periodic term and dissipative term

Md ¼ ν cos ωt�δ_θ
� �

I1 ð7Þ
where ν and δ40 are small parameters, ωand t are frequency and
time, respectively.

Below we consider successively two separate problems of
perturbed motion: the problem of a spatial motion of the body
with a small asymmetry (6) and the problem of a planar motion of
the body under the external torque (7).

3. The spatial motion of the asymmetrical body

3.1. Hamiltonian equations

Consider the spatial motion of the rigid body about its center of
mass in an atmosphere. To suppose that the biharmonic torque
acts on the rigid body

mθ ¼ aI1 sin θþbI1 sin 2θ ð8Þ
where

a¼ a0=I1; b¼ b0=I1 ð9Þ
Kinetic energy and potential energy of the spacecraft in this

case become

T ¼ 1
2

I1p2þ I2q2þ I3r2
� �

¼ 1
2

I1 _ϕ sin θ sin ψþ _θ cos ψ
� �2h

þ I2 _ϕ sin θ cos ψ� _θ sin ψ
� �2þ I3 _ϕ cos θþ _ψ

� �2i
П ¼ �

Z
Mθdθ¼ aI1 cos θþbI1 cos 2θ

where p; q; rð Þ are rotation components in the body frame and
ϕ;ψ ; θð Þ are Euler angles. Then the Hamiltonian is

H¼ TþП ¼ pϕ�pψ cos θ
� �

sin ψþpθ sin θ cos ψ
� �2

2I1 sin
2θ

þ pϕ�pψ cos θ
� �

cos ψ�pθ sin θ sin ψ
� �2

2I2 sin
2θ

þ p2ψ
2I3

þaI1 cos θþbI1 cos 2θ: ð10Þ

where pϕ ¼ ∂T=∂ϕ; pψ ¼ ∂T=∂ψ ; pθ ¼ ∂T=∂θ
� �

are the general-
ized momentums and θ;ψ ;ϕð Þ are the generalized coordinates.

The Hamiltonian (10) can be written as

H¼H0þεH1þOðε2Þ ð11Þ
where

H0 ¼ p2θ
2I1

þ pϕ�pψ cos θ
� �2

2I1 sin
2θ

þ p2ψ
2I3

þaI1 cos θþbI1 cos 2θ ð12Þ

H1 ¼ � pϕ�pψ cos θ
� �

cos ψ�pθ sin θ sin ψ
� �2

2I1 sin
2θ

ð13Þ
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Using the Hamiltonian equation (10), the canonical equations
of the disturbed motion are [22]

_qi ¼
∂H
∂pi

; pi ¼ �∂H
∂qi

ð14Þ

wherepi ¼ pϕ; pψ ; pθ
� �

, qi ¼ θ;ψ ;ϕð Þ.
We note that for b¼ 0 and ε¼ 0 the Hamiltonian equation (11)

corresponds to the motion of a heavy symmetrical top with one
point fixed – Lagrange's case [23].

3.2. Saddle points

To get the conditions of existence of a hyperbolic point in the
space θ; pθ

� �
, consider an unperturbed canonical system for

ε¼ 0 I1 ¼ I2ð Þ, using the Hamiltonian equation (12)

_θ¼ ∂H0

∂pθ
¼ pθ

I1
ð15Þ

_pθ ¼ �∂H0

∂θ
¼ � pψ �pϕ cos θ

� �
pϕ�pψ cos θ
� �

I1 sin
3θ

þaI1 sin θ

þbI1 sin 2θ ð16Þ

_ψ ¼ ∂H0

∂pψ
¼ pψ

I3
� pϕ�pψ cos θ
� �

cos θ

I1 sin
2θ

ð17Þ

_pψ ¼ �∂H0

∂ψ
¼ 0 ) pψ ¼ const ð18Þ

_ϕ¼ ∂H0

∂pϕ
¼ pϕ�pψ cos θ

I1 sin
2θ

ð19Þ

_pϕ ¼ �∂H0

∂ϕ
¼ 0 ) pϕ ¼ const ð20Þ

where q¼ θ;ψ ;ϕð Þ are the generalized coordinates (the Euler
angles) and p¼ pθ ; pψ ;pϕ

� �
are the generalized momentums.

The Hamiltonian equation (12) can be reduced to the equation
of the form [13]

_θ
2

2
þp2ϕþp2ψ �2pϕpψ cos θ

2 sin 2θ
þa cos θþb cos 2θ¼ E¼ const ð21Þ

where pψ ¼ pψ=I1 and pϕ ¼ pϕ=I1. The variable substitution
u¼ cos θ in Eq. (21) gives

_u2

2ð1�u2ÞþW uð Þ ¼ E; ð22Þ

where

W uð Þ ¼Wg uð ÞþWr uð Þ; Wg uð Þ ¼ p2ϕþp2ψ �2pϕpψu
2ð1�u2Þ ;

Wr uð Þ ¼ auþbu2:

Fig. 1. Heavy body with a fixed point (a), a spherical body (b) and a blunt conical body (c) in a resisting medium.
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To study the behavior of the function W uð Þ for different
combinations of the parameters pψ , pϕ, a and b, we first find the
derivative of the function Wg uð Þ with respect to the variable u

W″
g uð Þ ¼

p2ϕþp2ψ
� �

u�pϕpψ 1þu2
� �

1�u2
� �2

The numerator of the fraction has real mutually inverse roots
pϕ=pψ and pψ=pϕ, only one of which belongs to the interval
�1ou¼ cos θo1. Consequently, a unique extremum of the
function Wg uð Þ exists, where this extremum, equal to
maxðpψ 2; pϕ

2Þ=2Z0, is obviously a minimum. Analyzing the
second derivative

W″
g uð Þ ¼

p2ϕþp2ψ
� �

1þ3u2
� ��2pϕpψu 3þu2

� �
1�u2
� �3

we can establish that it, like the function Wg uð Þ itself, is non-
negative on the interval �1; 1ð Þ.

Indeed, the numerator has extreme value in the already

known points pϕ=pψ and pψ=pϕ, equal to ðpψ 2�pϕ
2Þ2=pϕ2Z0 и

ðpψ 2�pϕ
2Þ2=pψ 2Z0, respectively, while at the ends of the interval

u¼ 71 it has the values 4ðpψ 8pϕÞ2Z0. Hence it follows that the
function Wg uð Þ has no points of inflection, and its derivative
increases monotonically over the whole interval.

Now we consider the quadratic function Wr uð Þ. It has an extre-
mum at the point �a=2b

� �
, where its derivative W

0
r uð Þ ¼ aþ2bu is

equal to zero. The second derivativeW ″
r uð Þ ¼ 2b is a constant quantity.

It follows from this that when the condition

bZ� min
�1rur1

½0:5W″
gðuÞ� � bn ð23Þ

the second derivativeW″ uð Þ is non-negative and functionW uð Þ on the
interval �1; 1ð Þ has no inflection points. This means that there is a
unique stable equilibrium position on the phase portrait of the system,
and there is no singular saddle point. Saddle point is also absent if

jbjr0:5 aj j ð24Þ
In this case W″

r uð Þ has the same sign over the whole section and
consequently W 0 uð Þ ¼ 0 at a single point, and the function W uð Þ
has a unique extremum – a minimum. If none of the conditions
(23) and (24) is not satisfied, then two minima and a single
maximum of the function W uð Þ exist in the interval �1; 1ð Þ. It
corresponds to the presence of the phase portrait of an unstable
singular saddle-type point. This situation takes place when the
following condition is satisfied

W 0 un1ð ÞW 0 un2ð Þo0 ð25Þ
where un1; un2 are the roots of the equation W″ uð Þ ¼ 0. When
condition (25) is satisfied, the phase plane is separated by the
separatrices into the following three areas: an outer area A0 and
two inner areas A1 and A2 (Fig. 2).

Thus, if there is a saddle in the phase portrait, then from the
condition (23) follows:

bo0 ð26Þ

3.3. Homoclinic orbits

To find the two homoclinic orbits for the areas A1 and A2

(Fig. 2), which intersect in the saddle u¼ u0, Eq. (22) can be
solved with respect to

_u2 ¼ 2 1�u2� �
E�au�bu2� �þ2pψpϕu�pψ

2�pϕ
2 ¼ f uð Þ ð27Þ

In general, the degree of the polynomial f uð Þ equals four. For
the particular case E¼W0 as indicated in Fig. 2, which is the
motion along the separatrices (the homoclinic orbits) the degree

of the polynomial is three

f uð Þ ¼ �2b u�u0ð Þ2 u1�uð Þ u�u2ð Þ ¼ _u2 ð28Þ
where �14u24u04u141 are the roots of the polynomial as
shown in Fig. 2. Separating the variables in (28) and integrating it,
we get
ffiffiffiffiffiffiffiffiffiffiffi
�2b

p
� t ¼

Z
du

ðu�u0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1�uÞðu�u2Þ

p þD ð29Þ

where bo0 see (26) and D is an arbitrary constant. Substituting
the variables u¼ xþu0, we present this integral to a well known
form [24]

ffiffiffiffiffiffiffiffiffiffiffi
�2b

p
� t ¼

Z
dx

x
ffiffiffiffiffiffiffiffiffi
RðxÞ

p þD¼ � 1ffiffiffi
α

p ln
2αþβxþ2

ffiffiffiffiffiffiffiffiffiffiffiffi
αRðxÞ

p
x

þD ð30Þ

where α¼ �ðu1�u0Þðu2�u0Þ40, β¼ u1þu2�2u0, RðxÞ ¼ αþβx
�x2. Solving Eq. (30) for u¼ xþu0, we obtain the two homoclinic
orbits

cosθðjÞðtÞ ¼ u0�
4α

2β�ð4αþβ2ÞCj
�1 expðλtÞ�Cj expð�λtÞ

; ðj¼ 1;2Þ

ð31Þ
where

λ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bðu1�u0Þðu2�u0Þ

p
;

Cj ¼
2αþβðuj�u0Þþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α½αþβðuj�u0Þ�ðuj�u0Þ2�

q
uj�u0

The arbitrary constants Cj are found for the following initial
conditions:

t ¼ 0 : θ0 ¼ arccosðujÞ; _θ0 ¼ 0; ðj¼ 1;2Þ

3.4. Melnikov function

For the small body asymmetry, when ε¼ I2� I1ð Þ=I1a0 the
behavior of the asymmetry body differs significantly from the
motion of the symmetrical body (i.e., for I2 ¼ I1). There is the
additional small term (13) in the Hamiltonian equation (11) which
depends on angle ψ . This perturbation leads to the destruction of
the separatrices of unperturbed system of Eqs. (15)–(20) and the
formation of a stochastic layer even for small values of
ε¼ I2� I1ð Þ=I1. The homoclinic trajectories corresponding to the
motion along the separatices are needed to use the Melnikov
method [25] that shows the distance between the stable and

Fig. 2. Phase portraits.
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unstable manifolds. There are transverse intersections between
the stable and unstable manifolds of hyperbolic trajectories, if the
Melnikov function has simple zeroes. We use the modified
Melnikov method developed by Holmes and Marsden [15]. The
Melnikov function is given by

M ψ0
� �¼ Z 1

�1
G t;ψ0
� �

dt; ð32Þ

G¼ H0;
H1

Ω

( )
θ;pθ

¼ 1
Ω

H0;H1
n o

θ;pθ
�H1

Ω2 H0;Ω
n o

θ;pθ
ð33Þ

where ;f g is Poisson bracket. We have from [13] and (17)

H0;H1
n o

θ;pθ
¼ ∂H0

∂θ
∂H1

∂pθ
�∂H0

∂pθ
∂H1

∂θ
; H0;Ω

n o
θ;pθ

¼ �∂H0

∂pθ
∂Ω
∂θ

ð34Þ

Ω θ tð Þð Þ ¼ ∂H0

∂pψ
¼ pψ

I3
� pϕ�pψ cos θ tð Þ� �

cos θ tð Þ
I1 sin

2θ tð Þ
ð35Þ

and compute that

∂H0

∂pθ
¼ pθ

I1
¼ _θ; ð36Þ

∂H0

∂θ
¼ pϕ�pψ cos θ
� �

pψ �pϕ cos θ
� �

I1 sin
3θ

�aI1 sin θ�bI1 sin 2θ ð37Þ

∂H1

∂pθ
¼ pϕ�pψ cos θ
� �

cos ψ�pθ sin θ sin ψ

I1 sin θ
sin ψ ð38Þ

∂H1

∂θ
¼ � pϕ�pψ cos θ

� �
cos ψ�pθ sin θ sin ψ

I1 sin
3θ

pψ �pϕ cos θ
� �

cos ψ

ð39Þ

∂Ω
∂θ

¼ pϕ 1þ cos 2θ
� ��2pψ cos θ

I1 sin
3θ

ð40Þ

where θ tð Þ are the homoclinic orbits (31) and

ψ tð Þ ¼
Z t

0
Ω θ tð Þð Þdtþψ0 ¼ ψ tð Þþψ0 ð41Þ

Substituting Eqs. (34)–(41) into (33) can be written as

To show that transverse homoclinic orbits occur for εa0 we
need only to prove that the Melnikov function (32) has simple
zeroes. We expand the expression (42) in trigonometric series in
the variable ψ0 and using the symbol manipulator Mathematics
[26] can be shown that only one term for sin 2ψ0 is an even
function of t. Then the Melnikov function (32) can be written as

M ψ0
� �¼ Z 1

�1
R tð Þdt


 �
sin 2ψ0 ¼ P sin 2ψ0 ð43Þ

where R tð Þ are the even known functions of t, which has a
cumbersome form. Obviously, the function has simple zeroes and
this result agrees with the analysis given by [15].

3.5. Numerical analyses for spatial motion

In order to check the validity of the analytical criterion given by
(43), several numerical techniques are used. They are based on the
numerical integration of the equations of the disturbed motion
(14). We use the Poincare cross-section method, examining mani-
folds with plane sections, perpendicular to the phase axis ψ in the
two-dimensional space θ; pθ

� �
divided with an interval of 2π. In all

the calculations the biharmonic torque coefficients, the moments
of inertia and initial conditions are assumed to be as follows:

a¼ 1; b¼ �2; I1 ¼ 1 kg m2; I3 ¼ 1:5 kg m2

pθ ¼ 0; pψ ¼ 1 kg m2c�1; pϕ ¼ 1:4 kg m2c�1;

θ¼ 1:4212; ψ ¼ 0; ϕ¼ 0 ð44Þ

The roots of the polynomial (28), corresponding to the motion
along separatrices are

u2 ¼ �0:626; u0 ¼ 0:149; u1 ¼ 0:828

For the parameters (44) the factor of the Melnikov function (43)

P ¼
Z 1

�1
R tð Þdt

computed along the separatrices bounding areas A1 and A2 (Fig. 2)
are equal, respectively, to

P1 ¼ 4192:86; P2 ¼ �1:77

At ε¼ 0 the regular structure of phase space is observed (Fig. 3),
trajectories have no crossings, and Poincare sections coincide with
undisturbed phase portrait. The small perturbations (ε¼ 0:05) lead
to a complication of the phase space and occurrence of a chaotic
layer near the undisturbed separatrices. The intersection of stable
and unstable manifolds in the homoclinic orbits is revealed in the
Poincare plane of Fig. 4. Therefore, the occurrence of chaos in the
perturbed system is verified.

Fig. 3. Poincare section of the perturbed system for ε¼ 0.

G t;ψ0
� �¼ I3

4I1

I3pθcscθ pϕ 3þ cos 2θð Þ�4pψ cos θ
� �

pθ sin θ sin ψþψ0
� �þ pψ cos θ�pϕ

� �
cos ψþψ0

� �� �
I3 cot θcscθ pψ cos θ�pϕ

� �þ I1pψ

"

�2 2 pϕ cos θ�pψ
� �

pθ sin θ cos ψþψ0
� �þ 2I21

�
aþ2b cos θð Þ sin 4θþ2 p2ψ þp2ϕ

� �
cos θ

h

� 3þ cos 2θð Þpϕpψ
�
sin ψþψ0

� ���csc4θ pθ sin θ sin ψþψ0
� �þ pψ cos θ�pϕ

� �
cos ψþψ0

� �� �
I3 cot θcscθ pψ cos θ�pϕ

� �þ I1pψ
ð42Þ
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4. The planar motion of the body under the biharmonic torque
and small disturbance torque

The aim of this section is to find an exact analytical representa-
tion of the Melnikov function for the planar motion, if the small
disturbance is determined as the sum of a periodic time function
and a dissipative torque.

4.1. The heteroclinic orbits

The plane motion of the axisymmetrical body pϕ ¼ pψ ¼�
0; I1 ¼ I2Þ under the disturbance torque (7) is described by one
second-order differential equation

€θ¼ a sin θþb sin 2θþν cos ωt�δ_θ ð45Þ
where ν and δ40 are small parameters. If the disturbances are
absent ν¼ δ¼ 0, and we have the undisturbed system

€θ¼ a sin θþb sin 2θ ð46Þ
Note that Eq. (46) can be interpreted as an expanded form of

the Duffing equation, which is often chosen as an equation of an
unperturbed motion to illustrate possibilities for using the Melni-
kov method, for instance [27]. To show that for small values θ
Eq. (46) is equivalent to the Duffing equation, we should use the
approximate representation sin x¼ x�x3=3!

� �
for the trigono-

metric functions in Eq. (46)

€θþλθþμθ3 ¼ 0;

where

λ¼ �ðaþ2bÞ; μ¼ aþ8b
3!

:

Note also that Eq. (46) describes the motion of well-known
mechanical system – a heavy material point on a circle, rotating
about a vertical axis [28]

€θ¼ a sin θþb sin 2θ a¼ �g
l
; b¼Ω240

� �
ð1:9Þ

where g is the gravitational acceleration, l is the radius of the circle
and Ω is the angular velocity of the circle.

Now we write the energy integral for Eq. (46)

1
2
_θ
2þW θð Þ ¼ E ð47Þ

where E is the total energy and the potential energy is

WðθÞ ¼ a cos θþb cos 2θ ð48Þ
If conditions (3) and (5) are satisfied (see also (9)), then the

undisturbed system (46) has four equilibrium positions at
θA ½�π; π�: two stable – center type

θ¼ 0; π ð49Þ

and two unstable – saddle type

θn ¼ 7arccos � a
2b

� �
; ð50Þ

where bo0. The center θn ¼ � π coincides with the center θn ¼ π .
At θn-� π and at θn- π the speeds _θ coincide, therefore we can
say that phase trajectories are closed on a cylindrical phase space.
We consider the evolution of the cylindrical space in the range
θA ½�π; π�. We separate two areas A0 and A1, divided by the two
saddles s1 and s�1 (Fig. 5). It is necessary to note that the area A1 of
the development of the cylinder undergoes a break at θ¼ π; �π .
From (50) it follows that if the coefficient a is equal to 0, the saddle
s1 is in the position: θn ¼ π=2. At positive values of the coefficient
a40 the saddle s1 belongs to the interval θnAð0; π=2Þ, and at
negative values ao0 the saddle s1 belongs to the interval
θnAðπ=2; πÞ (Fig. 5). Let us denote the value of the potential
energy in the saddle (50) as Wn ¼WðθnÞ. Now if E4Wn, then
the motion is possible in the outer areas (Fig. 5). In the opposite
case (EoWn) the motion can occur in any of the inner areas,
depending on initial conditions. The equality E¼Wn corresponds
to the motion along separatrixes.

Heteroclinic trajectories can be found by separation of variables
in (48) and integrating it using the change of variables
x¼ tan θ=2

� �
. As a result, we get [21]:

a) The area A0

θþ ðtÞ ¼ 2arctan tan
θn
2

tanh
λt
2

� 

 �
;

σþ ðtÞ ¼ ð_θÞ ¼ λ sin θn
coshðλtÞþ cos θn

; ð51Þ

½θ� ðtÞ; σ� ðtÞ� ¼ ½�θþ ðtÞ; �σþ ðtÞ�;

b) the area A1

θþ ðtÞ ¼ π�2arctan½ cot θn
2

tanhðλt
2
Þ�;

σþ ðtÞ ¼ ð_θÞ ¼ λ sin θn
coshðλtÞ� cos θn

; ð52Þ

½θ� ðtÞ; σ� ðtÞ � ¼ ½2π�θþ ðtÞ; �σþ ðtÞ �:

Fig. 4. Poincare section of the unperturbed system for ε¼ 0:05.

Fig. 5. The potential energy WðθÞ ¼ a cos θþb cos 2θ and the phase space for a¼ 1,
b¼ �1.
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where

λ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�4b2

2b

s
:

4.2. The analytical Melnikov functions

The existence of heteroclinic intersections may be proved for the
disturbed Eq. (45) by means of the classical Melnikov method [25]. We
present a more convenient form for the application of the Melnikov
method to the nonautonomous equation of the second order (45) as
three differential autonomous equations of the first order [29]

_θ¼ σ ¼ f 1þg1
_σ ¼ a sin θþb sin 2θþν cos ϕ�δσ ¼ f 2þg2; ð53Þ

_ϕ¼ω

where f 1 ¼ σ, g1 ¼ 0, f 2 ¼ a sin θþb sin 2θ, and g2 ¼ ε cos ϕ�δσ.
The Melnikov function [23] for system (53) is given by

M7 ðϕ0Þ ¼
Z 1

�1
ff 1½q07 ðtÞ�g2½q07 ðtÞ;ωtþϕ0�gdt

¼ ν

Z 1

�1
σ7 cos ðωtþϕ0Þdt�δ

Z 1

�1
ðσ7 Þ2dt ¼MνþMδ ð54Þ

where q07 ðtÞ ¼ ½θ7 ðtÞ; σ7 ðtÞ � are the undisturbed heteroclinic
orbits (51) and (52) for the areas A0 and A1, respectively.

After substituting the solutions (51) and (52) into (54), the
components Melnikov function Mν and Mδ can be found in an
analytical form using the tabulated integrals [30]:

a) The area A0

Mð0Þ
ν ϕ0
� �¼ νλ sin θn

Z 1

�1

cos ðωtþϕ0Þ
cosh λtð Þþ cos θn

dt ¼ 2πν
sinh θnωλ

� �
sinh πωλ

� � cos ϕ0

ð55Þ

Mð0Þ
δ ¼ �δλ2 sin 2θn

Z 1

�1

dt

½ coshðλtÞþ cos θn�2
¼ �2δλ 1�θn cot θn½ �;

ð56Þ
b) the area A1

Mð1Þ
ε ϕ0
� �¼ νλ sin θn

Z 1

�1

cos ðωtþϕ0Þ
cosh λtð Þ� cos θn

dt ¼ 2πν
sinh π�θnð Þωλ

� �
sinh πωλ

� � cos ϕ0

ð57Þ

Mð1Þ
δ ¼ �δλ2 sin 2θn

Z 1

�1

dt

½ coshðλtÞ� cos θn�2
¼ �2δλ 1þ π�θnð Þcot θn½ �

ð58Þ

It is important to note that Eqs. (55)–(58) give us analytical
criteria for heteroclinic chaos in terms of the system parameters
ðδ; εÞ. Indeed, from (55)–(58) it is easy to derive that the Melnikov
function (54) has simple zeroes for:

a) The area A0

δ 0ð Þoν
π sinh θnωλ

� �
λ 1�θn cot θn½ �sinh πωλ

� �
�����

�����; ð59Þ

b) the area A1

δ 1ð Þoν
π sinh π�θnð Þωλ

� �
λ 1þ π�θnð Þcot θn½ �sinh πωλ

� �
�����

����� ð60Þ

4.3. Numerical analysis for the plane motion

In order to study the influences of the small disturbances on the
dynamics, the disturbed motion of the biharmonical system (45) is
analyzed by constructing Poincare surfaces in the two-dimensional
space θ; _θ

� �
. In Fig. 6, at ν¼ 0, δ¼ 0 the regular structure of the

phase space is observed, the trajectories have no intersections, and
Poincaré sections coincide with undisturbed phase portrait.

The disturbances result in the complication of the phase space
and the occurrence of a chaotic layer near the undisturbed
separatrixes as shown in Figs. 7–8. The growth of disturbances
there leads to an increase in the width of the chaotic layer, and the
new oscillatory modes determined by closed curves, uncharacter-
istic for the undisturbed case are observed.

In order to check in a quantitative way the validity of the
analytical criteria (59) and (60) we focus on the evolution of the
stable and unstable manifolds associated with the saddle fixed
points. The critical coefficients of the damping torque are equal to
the following values:

δ 0ð Þ ¼ 0:01823; δ 1ð Þ ¼ 0:00906ðν¼ 0:02Þ

Fig. 9 demonstrates numerical simulations of the phase space
with initial conditions close to the undisturbed separatrixes
(θ0 ¼ �1:0572, _θ0 ¼ 0:01, ϕ0 ¼ π=10) in the area A0. Now, we re-
set the value of δ from δ 0ð Þ ¼ 0:01823 to greater ones as illustrated
in Fig. 9. It can be observed clearly that, for δoδ 0ð Þ(δ¼ 0:018), the
stable and unstable manifolds transversally intersect each other
(Fig. 9(a)). However, when δ4δ0 (δ¼ 0:020), the invariant mani-
folds do not intersect (Fig. 9(b)). Fig. 10 indicates similar results in
the area A1 (δ 1ð Þ ¼ 0:00906) for the following initial con-
ditions:θ0 ¼ 0:9472, _θ0 ¼ 0:2, ϕ0 ¼ π. Fig. 10(a) has been con-
structed for δoδ 1ð Þ (δ¼ 0:0090) and Fig. 10(b) has been
constructed for δ4δ 1ð Þ (δ¼ 0:0113). Thus the description, based
on numerical simulations for some certain parameter values,
makes a good match with the analytical criteria (59) and (60)
provided by the Melnikov method.

Fig. 6. Poincaré sections for ν¼ 0, δ¼ 0.

Fig. 7. Poincaré sections for ν¼ 0:02, δ¼ 0.
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5. Conclusion

The main contribution of this paper is the formulation of an
approach for the study of the pitch motion dynamics of a rigid body
in a resistant medium under the influence of the biharmonic torque
a sin θþb sin 2θ. We have suggested to introduce the biharmonic
torque which reflects the behavior of the blunt-shaped spacecrafts
of small elongation descended in the atmosphere. This work
describes the some transient cases occurring during a spacecraft
descent in a planet atmosphere using methods of chaotic
mechanics, in particular, the classical Melnikov method and the
modified Melnikov method developed by Holmes and Marsden. We
studied two cases: the problem of a spatial motion of the body with
a small dynamic asymmetry (6) and the problem of a planar motion
of the body under the external torque (7) as the sum of the periodic
time function and the dissipative torque. In both cases we have
found the analytical solutions for the homo-heteroclinic orbits. In
the first case (spatial), the criteria for chaotic motions are derived by
means of the numerical computation of the Melnikov's integrals
given in the quadrature. In the second case (the planar motion) we
found the Melnikov function in the analytical form.

It is interesting that Eq. (53) can be represented as an extended
Duffing equation, which has mechanical application in the
dynamics of blunt bodies in a resisting medium. Frequently the
Duffing equation is used to illustrate chaos [27,29,31,32], however,
for the first time Melnikov functions are obtained in an analytical
form (55)–(58) for the extended Duffing equation (53).

It is notable that all analytical and numerical results given by
the Melnikov method have been confirmed by a good agreement
with direct numerical calculations in the construction of Poincaré
sections by using the fourth-order Runge–Kutta algorithms.
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