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Abstract The paper investigates the feasibility of designing and deploying a space elevator fixed at the L1 libration 

point in the Mars-Phobos system in the framework of the planar circular restricted three-body problem. Two 

configurations of the space elevator are discussed. One is directed towards Phobos and the other towards Mars. In the 

first case, the length of the elevator is limited by the distance to the surface of Phobos (about 3.4 km), and in the 

second by the distance to the surface of Mars (about 7800 km). The law of motion of the climber is proposed, including 

the acceleration part, the braking part and the main part of the climbing (or descending) of the climber at constant 

velocity. The influence of the mass ratio of the climber and the end body is analyzed. It is also shown that it is possible 

to turn the elevator 180 degrees from the direction of Phobos to the direction of Mars and back when the climber is at 

the end point of the elevator. This is achieved using the well-known control law of the elevator length. This is the first 

preliminary study on the design of the Mars-Phobos space elevator using the L1 libration point, based on theoretical 

statements and numerical simulation results. 

Keywords L1 libration point · Mars-Phobos system · Space elevator · Control law · Equations of 

motion. 

1 Introduction 

Space tethers and their variety of space elevators can be used in many future space missions as an 

economical and simple alternative to propulsion systems. An invaluable contribution to developing 

and popularising space tether systems was made by Beletsky and Levin [1]. The space elevator 

concept was proposed by Tsiolkovsky [2] in the 19th century. The modern design of a space 

elevator was presented by Artsutanov [3] and the theoretical possibility of building an orbital tower 

for a geostationary Earth satellite was proposed by Pearson [4]. The basis of a classic space 

elevator is a tether about 100,000 km long attached to the Earth's surface. At the moment, at least, 

it's science fiction. Cohen and Misra [5] proposed to consider the use of a partial elevator - shorter 

in length and floating in space. The idea of a partial space lift was subsequently developed in later 

works by Misra et al [6-8] and works by Zhu et al [9-12]. So far, hundreds of scientific works (for 
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example [13-18]) have been published on the possibility of using space tethers. One of the 

promising areas for the practical application of space tethers and elevators is the study of the far 

Solar System planets and their moons. 

Among the projects related to the use of tether systems for the study of planets and moons, 

NASA's the Phobos L1 Operational Tether Experiment (PHLOTE) deserves a special mention 

[19]. The PHLOTE mission focuses on studying the surface of Phobos using a tether deployed 

from an orbiting spacecraft located at the L1 libration point of the Mars-Phobos system. The L1 

libration point is about 3.4 km from the surface of Phobos. Scientific instruments are placed at the 

end of the tether and are used to study the surface of Phobos from a low altitude. Some of the ideas 

of the PHLOTE mission are developed in the paper [20].The PHLOTE mission set the stage for 

the design of a space elevator to be attached to the L1 libration point of the Mars-Phobos system. 

In the proposed space elevator, the tether is attached at the L1 libration point, the end mass is 

placed at the free end, and the climber moves along the tether as on a cableway. In static position, 

this space elevator is a double pendulum, which is studied in the paper [21]. The goal of this paper 

is to study the feasibility of designing and deploying a space elevator attached at the L1 libration 

point of the Mars-Phobos system in the framework of the planar circular restricted three-body 

problem.  

Two configurations of the space elevator are discussed. One is directed towards Phobos and the 

other towards Mars. In the first case, the length of the elevator is limited by the distance to the 

surface of Phobos (about 3.4 km), and in the second case it is restricted by the distance to the 

surface of Mars (about 7800 km). The control law of the climber motion is proposed, including 

the acceleration part, the braking part and the main part of the climbing (or descending) at constant 

velocity. The influence of the mass ratio of the climber and the end body is analyzed. It is also 

shown that it is possible to turn the elevator 180 degrees from the direction of Phobos to the 

direction of Mars and back when the climber is at the end point of the elevator. This is achieved 

by using the well-known control law of the elevator length. This is the first preliminary study on 

the design of the Mars-Phobos space elevator using the L1 libration point, based on theoretical 

statements and numerical simulation results. 

The objective of the paper is achieved in four phases: 

1. The basic assumptions are formulated in the framework of the circular plane restricted 

three-body problem, and the equations of motion of the space elevator attached to the 

L1 libration point are derived in polar coordinates. 

2. The control law of the climber motion including accelerating, main and braking phases 

is proposed. 
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3. For two cases, where the space elevator is deployed towards Phobos and towards Mars, 

the motion of the climber in two opposite directions is analyzed. 

4. The possibility of turning the space elevator from Phobos to Mars direction and back 

has been studied. 

 

2 Motion equations of the space elevator 

 

In this section the equations of plane motion of a space elevator in gravitational fields of two 

primaries (Mars-Phobos) in rotating polar coordinates with respect to the L1 libration point are 

derived in the framework of the circular restricted three-body problem [22]. 

 

2.1 Key assumptions 

 

The following acceptable assumptions are introduced: 

1. It is supposed that the primaries move in circular orbits around their mutual mass center 

(point O in Fig. 1). 

2. The space elevator is considered as a double pendulum. The end masses of the pendulums 1m  

(the climber) and 2m  (the end mass) are significantly smaller than the primary masses 1M
 
and 

2M  

1 2 2 1,m m M M           (1) 

3. The pendulums consist of weightless rigid rods of variable length 1 2,l l . 

4. In the circular restricted three-body problem, the mean rotation is 

 
df

const
dt

              (2) 

where f  is the true anomaly.  

5. In all considered cases, only in-plane motion is studied. 
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Fig. 1 The frame Oxy   

 

2.2 Motion equations of a space elevator attached at the L1 libration point 

 

Consider the equations of the end mass planar motion in the Local-Vertical-Local-Horizontal 
frame Oxy  within the scope of the classical restricted three-body problem [22] 

 2
1 1 1 1 1 1 2 2

1

2 cos cos
U

m x x y T T
x

  
    


        (3) 

 2
1 1 1 1 1 1 2 2

1

2 sin sin
U

m y x T
y

y T  
    


        (4) 

 2
2 2 2 2 22

2

2 cos
U

m x x y T
x

 
   


         (5) 

 2
2 2 2 2 2 2

2

s2 in
U

m y x T
y

y  
   


         (6) 

where   is mean orbital rate, 1T  and 2T  are the tensions in tether 1l  and 2l , respectively. The 

potential of Eqs. (3) and  (4) is written as 

1 1 1 2 2 1 2 2
1 1 2 2

11 12 21 22

( , , , )
m M m M m M m M

U x y x y G
r r r r

 
    

 
     (7) 

where G is Newtonian gravitational constant, the distances between the primaries (1 and 2) and 
the climber and the end mass (Fig. 1) 
 

2 2
11 1 1( )r x d y           (8) 

2
12

2
1 1( (1 ))x yr d             (9) 
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2
2 2

21 2( )r x d y           (10) 

2
22

2
2 2( (1 ))x yr d             (11) 

where d  is the distance between the primaries 1 and 2, 2

1 2

m

m m
 


 is the mass ratio.  

The change to the polar coordinates by means of substitution of the variables  

1 1 1 1 1 1cos , sinx a l y l     ,         (12) 

2 1 1 2 2 2 1 1 2 2cos cos , sin sinx a l l y l l              (13) 

leads to Eqs. (3)-(6) in the following form  

 21 1 1 2 2 1 2
1 1 1 1 1 123 3

111 12

sin sin
sin 2 sin

M M T

r r
l G a l

m

        
 

     
 

      (14) 

       3 3 3 3
2 2 2 12 1 1 1 2 12 1

3 3 3

12 22 11 21

2 2
12 22 11 21

3

sin sin sin sinr r rM r
G

r r r

l

r

l M
l

     


  
  










  

 2 122
1

1

2 sin
T

l
m

     ,       (15) 

       
21 1 1 1 2 2 1 1 2

1 1 1 1 2 12 13 3
1 1 11 2

cos cos
cos co

1
s

r r

M l M l
l G a l T T

m

   
    

  
       





  (16) 

   3 3 3
1 1 2 111 21 11

2
11 2

1 2

3
1

2

3

cos cosr r r
G

r

M l l
l

r

    
  



  

     
3 3 3

22 2 2 12 1 2 1
2 2 123 3

12 22 12

1 2
2

2 22 11

1cos cos 1
cos

rM l l T
l T

m m

r r

r r m

  
  

          




  (17) 

where 

2 2
1 1 1 1 111 2 coslr l     ,        (18) 

2 2
2 2 1 1 112 2 coslr l    ,         (19) 

2 2
1 1 1 2 221 1 1 2 2( cos cos ) ( sin sin )lr ll l        ,     (20)

2 2
2 1 1 2 222 1 1 2 2( cos cos ) ( sin sin )lr ll l        ,     (21) 

1 a d   , 2 (1 )da           (22) 

Here a  is the coordinate of the L1 libration point in the frame Oxy , 1  and 2  are deflection 

angles of the space elevator (Fig.1), 12 1 2   . 
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The behaviour of the space elevator depends on the tether tension 1T  and 2T  , which are included 

in the right-hand sides of Eqs.  (14)-(17). In the case when the tether lengths are given as functions 

of time  1l t  and  2l t , then the tether tension can be found by solving Eqs. (16) and (17) with 

respect to 1T  and 2T , as follows 

 1 1 11 2 1 1 1 1 2
1 1 122 3 3 3

1 2 12 11 11

2 2 12

2

2

1

1
cos cos cos cos cos

cos
sin

lm m l l l
GM

m m r r
T

r

       
 




      
           

 

 1 2 1 2 1 2 1 2
2 123 3 3

12 12 2

2 1

2

2 2 12
cos cos cos cos cos

cos
l l l l

GM
r r r

       


     
         

 

    2 22
1 1 1 1 2 12 122 2

1
cos cos cosa l l l l       


      

   ,   (23) 

1 2 1 1 12 1 2 1 12 2
2 12 3 3

1 2 12 11 21

sin sin cos cos

sin

m m l l
GM

m m r
T

r

     


  
     

  

2 1 12 2 2 1 12 2
2 3 3

12 22

sin sin cos cosl l
GM

r r

      







  

      1 2 1 2

2
2 2

1 2 2 1 12 2 12cos 2 cos cos cos
2

a
l l l l

         


        


    (24) 

 

3 Accelerating, main and braking phases 

 

3.1 Climbing at constant velocity 

 

Assume the climber 1m  moves at a constant velocity 

1 Vl const   2 Vl const    1 0l  , 2 0l        (25) 

It is assumed that the total length of the tether is constant, and therefore 

1 20l l tl cons  , 01l Vl t  , 2l Vt         (26) 

Substituting (25) into Eqs. (14), (15), (23) and (24), get 

 
11 12

21 1 1 2 2 1 2
1 1 1 123 3

1 1

sin sin
sin 2 s

1
in

M M T
G a

l m
V

r r

        
  

      
  

  ,   (27) 

      
       12 22 11 21

2
2 12 22 11 2

3 3 3 3
2 2 2 12 1 1 1 2 12 1

3 3 3 3
1

sin sin in sin1 sr r r r
G

r r

M l M l

l r r

     


   
  

   

 
 



        
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 2
1

12
1

2 sin
T

m
V     




         (28) 

where 

 1 1 11 2 1 1 1 1 2
1 1 122 3 3 3

1 2 12 11 11

2 2 12

2

2

1

1
cos cos cos cos cos

cos
sin

lm m l l l
GM

m m r r
T

r

       
 




      
           

 

 1 2 1 2 1 2 1 2
2 123 3 3

12 12 2

2 1

2

2 2 12
cos cos cos cos cos

cos
l l l l

GM
r r r

       


     
         

 

    2 22
1 1 21 2 12

1
cos cosa l l      


    

  ,     (29) 

1 2 1 1 12 1 2 1 12 2
2 12 3 3

1 2 12 11 21

sin sin cos cos

sin

m m l l
GM

m m r
T

r

     


  
     

  

2 1 12 2 2 1 12 2
2 3 3

12 22

sin sin cos cosl l
GM

r r

      







  

      
2

2 2

1 2 2 1 11 22 2cos 2 cos cos
2

a
l l

        


      


     (30) 

At the beginning or at the end of the climber's motion 1l  (or 2l ) tends to zero, this leads to an 

increase in the amplitude of the tether oscillations, as follows from Eqs.  (27) and (28). In practice, 

in this problem there are no material points for which these equations of motion are written, but 

rigid bodies with linear dimensions. This fact allows us to exclude singular points ( 1 0l  , 2 0l  ) 

from consideration. With the total length of the space elevator equal to 0 3400l m , the climber's 

motion starts from position  

 1 0 0 3399l l m   , 2 0 1l m   ,    

and ends at 

2 0 3399.5fl ml   , 1 0.5fl m    

 Fig. 2 plots the deflection angles of the tether 1  and 2 when the masses of the climber and the 

end body are equal 21 100m m kg  , the climber's velocity 10.1V m s  , for the following initial 

conditions: 

1 0.1rad   , 2 0.1rad   , 1 0  , 2 0         (31) 
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Fig. 2  The deflection angles of the space elevator 1  and 2   

There is a sharp increase in the tether deflection angle 1  at the end of the ascent, as shown in Fig. 

2. 

 

3.2 Accelerating, main and braking phases 

 

Obviously, the velocity of a climber cannot change instantaneously from zero to some finite value 

0V  . Similarly, a climber cannot stop instantaneously. Therefore, the main phase of the climber's 

motion at constant velocity should be preceded by an acceleration phase and followed at the end 

by a deceleration phase. These three phases of motion look like this: 

Accelerating phase  0 0, Vt t t t    

  2

0
1 0

4
sin

4
V

V

t tVt
l l

t




 
   

 
,  02 1l l l  ,     (32) 

 0
1 1 sin

2 V

t td
V l V

dt t

  
   

 
 , 2 1V V  , 

 0
1 1 cos

2 2V V

t td V
W V

dt t t

  
   

 
 , 2 1W W   

Main phase  0 ,V f Vt t t t t     

1 0 0

2
1Vl l V t t t


 

   





 
 

, 02 1l l l  ,      (33) 

1 1

d
V l V

dt
  ,  2 1V V  , 

1 1 0
d

W V
dt

   , 2 1 0W W    

Decelerating phase  ,f V ft t t t    
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    2

1 0 0

4
2 cos

4
fV

f V
V

t tVt
l l t t t V

t





 
      

  
, 02 1l l l  ,    (34) 

 
1 1 sin

2
f

V

t td
V l V

dt t

 
   

  
 , 2 1V V  , 

 
1 1 cos

2 2
f

V V

t td V
W V

dt t t

  
    

  
 , 2 1 0W W    

where 0t  and ft  are start and end times, Vt  is the duration of the acceleration and deceleration 

phases, 1W  and 2W  are the accelerations. Fig. 3 shows the velocity profile of the climber 1 1

d
V l

dt


. 

 

 

 

Fig. 3 The velocity profile of the climber  1 0
d

l
dt

t    for 1 2 100m m kg  , 3400l m

1500Vt s  

 

4 Climbing from Phobos to the L1 libration point and reverse 

 

4.1 Climbing from Phobos to the L1 libration point 

 

Fig. 4 illustrates the behaviour of the space elevator when the climber moves according to the laws 

(32)-(34), the acceleration time and deceleration time are equal to 1500Vt s . The space elevator 

parameters and initial motion conditions (31) are taken to be exactly the same as in the construction 

of Fig. 2. 
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Fig. 4 The deflection angles of the space elevator 1  (red) and 2  (blue) for the laws (33)-(35) 

for 
1

2 1
m

m
    

Comparison of Fig. 2 and Fig. 4 shows that the application of the acceleration and deceleration 

phases of the climber (32) and (34), more than 3 times reduce the deflection angles of the space 

elevator at the beginning and end of the climber's motion. As Fig. 5 indicates, the forces in the 

tethers 1l  and 2l  do not exceed 0.4 N. 

 

 

 

Fig. 5 The tether tension 1T  (red) and 2T  (blue) for 
1

2 1
m

m
    

 

4.2 Influence of the ratio of climber mass to end mass on the dynamics of the space elevator  
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The case when the mass ratio 2

1

m

m
   equals 1 is illustrated in Figs. 4 and 5, where 

21 100m m kg  . Figs. 6 and 7 show the deflection angles 1  and 2 , and the forces in the tethers 

1l  and 2l , with the total mass of the space elevator unchanged 

21 200m m kg            (35) 

a 

 

 

b 

 

 

 

Fig. 6 The deflection angles of the space elevator 1  (red) and 2  (blue) for  

(a) 2   ( 1 66.667m kg 2 133.333m kg )  

  (b) 0.5   ( 1 133.333m kg 2 66.667m kg ) 

a 
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b 

 

 

Fig. 7 The tether tension 1T  (red) and 2T  (blue) for 0.5  , 3400l m  

(a) 2   ( 1 66.667m kg 2 133.333m kg ) 

  (b) 0.5   ( 1 133.333m kg 2 66.667m kg )  

 

The simulation results presented in Figs .4 - 7 show that changing the mass ratio within the range 

2

1

[0.5, 2]
m

m
    does not essentially change the dynamics of the space elevator. 

 

4.3 Descending from the L1 libration point to Phobos 

 

Consider the dynamics of the equal-mass elevator (
1

2 1
m

m
   ) when descending from the L1 

libration point to Phobos. 

(a)  
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(b)  

 

 

 

Fig. 8 (a) The deflection angles of the space elevator 1 (red) and 2 (blue), and 

(b) the tether tension 1T  (red) and 2T  (blue) for 
1

2 1
m

m
    

Comparison of Figs .4 and 5 with Fig. 7 indicate the similarity of the simulation results presented 

for the climbing and descending of the climber. 

 

5 Space elevator deployed towards Mars.  Moving the climber 

to the L1 libration point and back 

 

Consider the case where the space elevator is deployed from the L1 libration point towards Mars, 

as shown in Fig. 9. The same climber velocity control laws for the acceleration, main and braking 

phases (32)-(34)  are used as before. 
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Fig. 9 The frame Oxy   

 

 

As before, the velocity of the climber in the main phase is equal to 10.1V m s  , the length of 

the elevator is equal to 0 3400l m , and the mass of the climber and the final mass are equal to 

21 100m m kg  . The initial conditions differ from the initial conditions (31) by the angle  : 

1 0.1rad    , 2 0.1rad   , 1 0  , 2 0        (36) 

Figs. 10 and 11 show the angles of tether deflection 1  and 2  when the climber moves towards 

the L1 libration point and towards Mars, respectively. 

 

 

Fig. 10 The deflection angles of the space elevator 1  (red) and 2  (blue) for the climber  
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moving towards the L1 libration point  

 

 

 

 

Fig. 11 The deflection angles of the space elevator 1  (red) and 2  (blue) for the climber  

moving towards Mars 

 

As can be seen from Figs. 10 and 11, there is no essential difference in the direction in which the 

climber moves, the deflection angles only increase at the beginning or end of the motion. 

 

6 Turning the elevator towards Mars and back 

 

In the last section, we answer the question of whether it is possible to turn the space elevator 

attached to the L1 libration point from the direction of Phobos to the direction of Mars and vice 

versa. First, consider the case where the space elevator is turned towards Phobos and the climber 

is at the bottom point. The climber and end mass form a single body ( 2 0l  ) with mass equal to 

1 2m m m  . To turn the space elevator 180 degrees towards Mars, the tether length control law 

for 1l l   from study [23] is used 

0 1 sin
d

l l c
dt

    
 

          (37) 

where 0l  is the initial tether length, c  is the control dimensionless coefficient, 1  .  

The equations of motion of the space elevator (14)-(17) are reduced to a single second order 

differential equation  
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 
1

21

11 2

1 2 2
3 3

sin sin
sin 2

M M
l a

r
l

r
G

       
 

    
 

        (38) 

where 

2 2
1 11 11 2 cosr l l     ,        (39) 

2 2
2 212 2 cosr l l    ,         (40)  

The time it takes for the space elevator to overturn depends on the dimensionless control 

coefficient and the initial conditions of the motion, which for the plot in Fig. 12 are taken as follows 

200c   , 0 0.2 rad   , 0 0
d

dt


         (41) 

(a)  

 

 

(b)  

 

 

(c)  

 



17 

 

Fig. 12 (a) The deflection angles  t , (b) the tether length  l t  and (c) the tether tension ( )T t  

 

The sections with negative tension force shown in Fig. 13c indicate that the proposed control law 

is not feasible using a tether. In these sections, the tether should act like a compressed spring, but 

it sags ( 0T  ). To overcome this difficulty, a low thrust jet propulsion at the end point which 

thrust is directed along the tether can be used. In these sections the thruster is turned on and 

implements the required control law (37). 

Note the following two facts: first, it takes about 4.6 Earth days for the space elevator to overturn. 

Secondly, the control law (37) not only makes the space elevator overturn, but also stabilises it in 

the direction of Mars (   ). 

The space elevator returns to the position oriented towards Phobos (Fig. 13) when the sign of the 

dimensionless control coefficient changes and with the following initial motion conditions 

200c  , 0 0.2rad    , 0 0
d

dt


         (42) 

(a)  

 

(b)  
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(c)  

 

Fig. 13 (a) The deflection angles  t , (b) the tether length  l t  and (c) the tether tension ( )T t  

 

5 Conclusions 

 

The space elevator deployed from the L1 collinear libration point of the Mars-Phobos system is 

considered in the framework of the restricted planar circular three-body problem. The main 

findings of the paper can be summarized in the following way: 

1. The motion equations of the space elevator are derived and the control law of the climber 

velocity is proposed, including accelerating phase, main phase with constant velocity and braking 

phase. 

2. The uniqueness of this space elevator is that it can be deployed from the L1 libration point both 

towards Phobos for a distance of up to 3.4 km to the surface of Phobos, and towards Mars for a 

distance of up to several thousand km to the Martian atmosphere. 

3. The possibility of turning the space elevator from the direction to Phobos to the direction of 

Mars and back is illustrated. 
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This work demonstrates the feasibility of deploying a space elevator from the L1 libration point of 

the Mars-Phobos system, and of using a climber to move cargo from the surface of Phobos to the 

space station located at the L1 libration point and back. In the future it will be necessary to 

- study the influence of the eccentricity of the Mars-Phobos system orbit on the behaviour of the 

space lift, 

- consider the spatial motion of the space elevator, 

- investigate in detail the deployment of such the space elevator to Mars over long distances, 

- examine the possibility of using space elevators to transfer satellites to and from quasi-satellite 

orbits. 
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