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Abstract 

The paper deals with the attitude dynamics of CubeSats with flexible stabilizing 

panels in free molecular flow taking into account the aerodynamic damping. In 

addition to the operating position, characterized by zero angle of attack, 

aerodynamically stabilized satellites may have intermediate equilibrium 

positions. The presence of unstable equilibrium positions and small perturbations 

such as the oscillations of the flexible panels is the cause chaos in the attitude 

motion. An analysis of the chaotic motion is carried out using Poincare sections 

and Lyapunov exponents. Numerical simulations show that the chaos intensity is 

sensitive to the geometric and environmental parameters of the system. 
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1. Introduction 

Initially envisioned as educational or technology demonstration platforms, 

CubeSats became the basis for real low-cost missions with potential high value 

in terms of science return and commercial revenue [1,2]. As of April 2021, almost 

1500 satellites of this type have been launched [3]. CubeSats come in different 

sizes, which are based on the standard unit — a cube with side length 10 cm (1U). 

The most popular are the 3U CubeSats (30 cm x 10 cm x 10 cm), which make up 

about half of all CubeSats launched [2,3]. CubeSats can be used for several space 

applications [4], i.e. in astrophysics [5], heliophysics [6], deep space exploration 

[7,8], communications [9], weather monitoring [10], space debris removal 

[11,12]. However, one of the most promising and popular applications of 

CubeSats is Earth observation [13,14] from low and very low Earth orbits (LEO 

and VLEO). The latter are typically characterized by altitudes of 80 to 450 km. 

In the last years, the interest in VLEO has increased because of certain advantages 

of these orbits: optical payloads can provide higher resolution imagery, the signal 

to noise ratio for the communications is also higher, VLEO orbits have less 

population of space debris [15,16]. 

For most applications, it is important to control angular orientation of LEO 

and VLEO satellites. Typically, the attitude control is performed using active 

devices such as magnetorquers and reaction wheels [17], or micropulsed plasma 

thrusters [18]. However, due to the limited power budgets of CubeSats, the use 

of such power-consuming devices is challenging. For low orbits, where the 

influence of the atmosphere is significant, the simplest way is to use the passive 

aerodynamic stabilization, since it does not require any power supply. This type 

of stabilization has been studied since the late 50s [19–25], but previously it was 

mainly used for large satellites. Currently, with the growing popularity of micro-

, nano-, and picosatellites, the number of missions using partial or total aero-

stabilization has increased substantially. For example, this type of stabilization is 
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realized for the QARMAN CubeSat [26] currently orbiting the Earth, and the 

SOAR nanosatellite [27], due to be launched in 2021, meant to investigate the 

atmospheric flow regime in VLEO. This interest in aerodynamic stabilization 

stems from the fact that the smaller the satellite, the greater the influence of the 

aerodynamic torques on its angular motion. It can be shown by the following 

scaling analysis. The aerodynamic torque is proportional to the cube of the 

characteristic length, while the moment of inertia of the satellite is proportional 

to the fifth power of the same quantity. Thus, as the satellite becomes smaller, 

the moment of inertia decreases faster than the aerodynamic torque, which leads 

to an increase in angular acceleration due to this torque. Aerodynamic 

stabilization on CubeSats is usually realized by means of flat tail panels [26,28–

33], drag sail systems [12,34], or deployable aeroshells [35]. Hereafter in this 

paper, only the tail panels will be discussed. All these methods have a common 

feature: they increase the satellite’s drag. For a de-orbit device [32], this can be 

regarded as an advantage, but in many cases it may be necessary to increase the 

orbital lifetime. One way to achieve this is to give the satellite a fixed streamlined 

shape [36], or to use in-orbit deployment of the nose panels forming, e.g., a 

pyramidal surface [37], as shown in Fig. 1. 

 

Figure 1: Concept of CubeSat with deployable tail and nose panels [37].  

 

Additional deployable aerodynamic surfaces are inevitably flexible and, 

while the satellite oscillates under the action of the environmental torques, mainly 

aerodynamic and gravitational, the panels oscillate as well at frequencies 

different from that of the satellite. Dynamics of flexible structures and flexible 
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spacecraft problems have received considerable attention in the literature [38–

43]. When studying the attitude motion of a spacecraft with flexible appendages, 

it is convenient to define the unperturbed motion. Typically, it is the attitude 

motion of the spacecraft with appendages assumed to be rigid. Then the motion 

of the spacecraft with flexible appendages can be considered as the perturbed 

motion. It is known that if there are unstable equilibrium positions (saddle points) 

in the unperturbed motion, then even small disturbances can cause chaos in the 

perturbed motion [44]. In the case of the attitude motion of a satellite with flexible 

panels the source of these disturbances is the elastic oscillations of the panels 

[45–48]. Therefore, in some cases, instead of stabilizing the attitude motion of 

the satellite, the panels may, on the contrary, destabilize it due to chaos. 

New promising trend in the field is the tail panels of variable length [49]. This 

solution allows to change the moment of inertia of the satellite and, consequently, 

affect its attitude dynamics. Such new engineering ideas require solving new 

scientific problems. In particular, the variable length of the panels significantly 

complicate the aerodynamics of the satellite. The length and deployment angle of 

the panels, as well as the position of the satellite’s center of mass (CoM), affect 

the aerodynamic torques and, consequently, the attitude motion. In certain 

configurations, undesirable intermediate trim positions may exist. The satellite 

may get to one of these positions because of an accidental disturbance, which 

may happen, for example, when the satellite separates from the launch vehicle, 

or if the tail panels are deployed inaccurately. These undesirable intermediate 

trim positions were discussed earlier [50,51], but the main focus was to ensure 

the monostability. However, complete elimination of these positions is not 

always possible, therefore, in the authors’ opinion, more research is needed in the 

field of attitude motion in the vicinity of these positions, especially considering 

the possibility of chaos that can be caused by the oscillations of the flexible 

elements. The other important aspect is the influence of the damping 

aerodynamic torque. It is often neglected [52,53] since its magnitude is usually 
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much lower than the magnitude of the aerodynamic restoring torque. But in the 

presence of the intermediate trim positions, especially in VLEO, the damping 

torque may perturb the attitude motion of the satellite and cause the satellite to 

get into an undesirable position, characterized by a high angle of attack, and 

remain in it. So, paradoxically, the damping of attitude motion, which has a 

positive effect on the angular oscillations near the operating position, may lead 

to negative consequences if the satellite has intermediate trim positions. 

The goal of the paper is to investigate the features of the nonlinear attitude 

motion of flexible CubeSats under aerodynamic torques at large angles of attack 

in the vicinity of the intermediate equilibrium positions and to demonstrate the 

possibility of chaos. In order to achieve this goal, the unperturbed and perturbed 

motions are defined, the equilibrium positions are studied, the aerodynamic 

characteristics of CubeSats with nose and tail panels are calculated, the 

mathematical model of the nonlinear attitude motion of the system is developed, 

and numerical simulations are performed. 

The paper is organized as follows. In Section 2 the problem is formulated and 

the unperturbed motion is analyzed. The dependencies of equilibrium positions 

on the orbit altitude and the length of the tail panels are studied. Section 3 presents 

the equations of perturbed motion of the satellite with flexible panels, which take 

into account the action of restoring and damping aerodynamic torques as well as 

the gravitational torque. Section 4 contains numerical simulations. Chaos is 

investigated using Poincaré sections and Lyapunov exponents. Finally, 

conclusions are given in Section 5. 

2. Problem statement. Aerodynamic instability 

Consider the attitude motion of a CubeSat with additional aerodynamic 

surfaces under the following assumptions. 

1. The attitude motion of the satellite depends on two environmental torques: 

one due to the gravity gradient and one due to the influence of atmosphere. 
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2. The satellite has two equal principal moments of inertia  , .y z z xJ J J J   

3. The center of mass of the satellite lies on its longitudinal axis. 

4. Additional aerodynamic surfaces are modeled as homogeneous thin flat 

plates. 

5. The aerodynamic characteristics of the satellite do not depend on the 

oscillations of the panels. 

6. The orbit of the satellite remains circular. 

7. All motions take place in the orbital plane. 

The last assumption is reasonable because to demonstrate chaos in the attitude 

motion, it is enough to take the simplest case of rotation in the orbital plane, since 

the presence of chaos in a particular case means that it is actually present in the 

general case. In addition, the planar rotation is the limiting case of the spatial 

attitude motion. It is in the planar case that the largest amplitudes of the angle of 

attack are observed, since all the potential energy of attitude motion stored in the 

satellite is transformed into the kinetic energy of rotation around only one axis. 

Let us determine the environmental torques acting on the satellite. The 

gravity gradient torque is defined as 

    2, 3 cos sing z xM h J J      (1) 

where   is the angle of attack, zJ  and xJ  are transverse and longitudinal 

moments of inertia of the satellite, respectively,  3
/ R h    is the mean 

motion, h  is the altitude, R  and   are the mean radius and gravitational 

parameter of the Earth, respectively. Note that the gravitational torque is 

conservative (potential), since it depends only on the coordinates   and .h  

The aerodynamic torque Ma can be written as a sum of two components: 
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     , , , , ,a r dM h M h M h        (2)

where rM  is the restoring torque, which is conservative, 

     2

, ,
2r m

V h
M h C lA


   (3)

and dM  is the damping torque, which is non-conservative since it depends not 

only on the coordinates, but also on the angular speed: 

      2, , .
2d m

V h
M h C l A 

   
   (4)

In Eqs. (3) and (4) A  is the reference area taken equal to the satellite body cross-

section area, l  is the reference length taken equal to the satellite body length, ρ 

is the air density,  /V R h   is the orbital velocity, mC  and mC  are the 

restoring and damping aerodynamic torque coefficients, respectively. 

The aerodynamic torque coefficients are calculated as follows. Taking into 

account that at the CubeSats operational altitudes (above 120 km) the Knudsen 

number Kn is larger then 10, which means that the flow is free molecular [54], 

one can assume that the reflected air molecules speed distribution is Maxwellian 

and calculate the pressure and shear stress coefficients using the Schaaf and 

Chambre’s approach [55]. Dividing the surface of the satellite into a number of 

small flat elements we find pressure and shear stress coefficients for each 

element, 
ipc   and ,

i
c  respectively, as 

 

   

2
2

2 2
2

2
sin exp sin

2

2 1
sin sin 1 sin ,

2 2

i

N N w
p i i

N N w
i i i

T
c s

s Ts

T
s erf s

s s T

  


    





 
    
 

            

 (5)
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    2cos
exp sin 1 erf sin sin

i

T i
i i ic s s s

s


     


       (6) 

where i   is the element number, s  is the freestream molecular speed ratio, 

,
2

V
s

RT
  (7) 

R  = 287 J/(kg·K) is the ideal gas constant for air, wT   is the wall temperature, T  

is the temperature of incident stream, N   and T  are the normal and tangential 

momentum accommodation coefficients, respectively. For interaction of air with 

most engineering surfaces, experimental data indicate that 1N T    [56]. In 

this paper, these coefficients are taken both equal to 0.9 which corresponds to 

aluminum-air interaction [57]. In Eqs. (5) and (6), i   is the inclination angle of 

the i-th flat element, 

 arcco ˆs ˆi i  τ V  (8) 

where V̂  is the unit vector of the incident stream, ˆ iτ  is the unit tangential vector 

of the i-th element, 

 
 

ˆ ˆˆ ˆ
,ˆ

ˆ ˆˆ ˆ

i i

i

i i

 


 

V n V n
τ

V n V n
 (9) 

ˆ
in   is the unit normal vector of the i-th element directed such a way that 

ˆ 0ˆ .i  n V  Restoring torque coefficient is calculated as 

 
1

ˆ ˆ
1

ˆ
i i

N

m i i p i i
i

C A c c
Al 



      r n τ z  (10) 

where ir  is the radius-vector from the satellite center of mass to the geometric 

center of the i-th element, ẑ  is the unit vector along the satellite transverse axis 

z, N is the number of elements. Note that it is necessary to exclude from 

consideration the elements that are shielded by the upstream components of the 



9 

body. An example of surface meshing with shielding taken into account is shown 

in Fig. 2. Taking into account that, as the satellite rotates with angular 

velocity   the speed of the incident stream on the i-th element changes by a 

small amount  i r   one can calculate the damping torque coefficients (see, 

e.g., Ref. [58]). 

 

Figure 2: Example of satellite surface meshing and shielding. 

In the case of planar rotation, we have only one damping torque coefficient 

corresponding to the rotation about z axis with angular speed  : 

m
m

z

C
C








 (11) 

where z  is the dimensionless angular speed, 

.z

l

V
    (12) 

For the convenience of analysis, the aerodynamic torque coefficients can be 

represented by Fourier series: 

 
1

sin ,
k

m j
j

C b j 


  (13) 
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   0

1

cos
2

k

m j
j

a
C a j

 


 


  (14) 

where k is the number of harmonics. 

We define the perturbed attitude motion as the motion of the satellite with 

flexible panels under the restoring and damping aerodynamic torques and 

gravitational torque. Then the unperturbed motion is the motion of the rigid body 

under the aerodynamic restoring torque and gravitational torque only. Taking into 

account Eqs. (1), (3), (13) one can write the equation of the unperturbed motion 

as 

1

sin sin2
k

z r g a g
j

J M M c j c  


     (15) 

where 

21
,

2ac V lA  (16) 

   23
.

2g z xc J J    (17) 

Note that all the torques acting in the unperturbed motion are potential, so Eq. 

(15) has an energy integral, which can be written as 

 21

2 z sE J U const     (18) 

where Us is the potential energy of the satellite in its unperturbed motion, 

    2

1

cos cos .
k

j
s r g a g

j

b
U M M d c j c

j
   



      (19) 

Minima and maxima of the 2π-periodic potential energy function defined by 

Eq. (19) correspond to the equilibrium positions e  of the satellite which 

are the roots of the equation 0.s
r g

U
M M




   


 When 
2

2
0,

e

sU

 








 



11 

the potential energy is in its minimum and the equilibrium is stable; on the 

contrary, when 
2

2
0,

e

sU

 








 the potential energy is at its maximum so the 

equilibrium is unstable. 

Potential energy curves may have different shapes depending on the altitude 

and satellite parameters, primarily on the coefficients jb  of the Fourier series 

representation of the restoring aerodynamic torque coefficient. These 

coefficients, in their turn, are determined by the geometric parameters of the 

satellite, so it is difficult to analyze the unperturbed motion without choosing a 

particular shape of the satellite. In this paper, we consider a CubeSat with 

pyramidal nose and tail panels (Fig. 3). The most important of its geometric 

parameters are the satellite body length ,l  panels deployment angle ,  the 

dimensionless nose and tail panels lengths n  and ,t  respectively, 

dimensionless longitudinal shifts of the CoM of the satellite body and of the CoM 

of the entire satellite from the geometric center 1,C  b  and ,  respectively. 

Parameters   and b  are considered positive if the centers of mass are shifted 

closer to the nose of the satellite. The longitudinal shift of the CoM of the satellite 

can be calculated using the definition of CoM as 

 

 

2
2 1 2 1 cos

3
1 4

b n n t t

n t

    

 

      
  

 
 (20) 

where t   is the relative mass of a single tail panel, 

2

,t t t
t

m l

M Mu

     (21) 

n   is the relative mass of a single nose panel, 
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2

,
2 cos

n n n
n

m l

M Mu

 


   (22) 

  is the angle between the nose panel and the longitudinal axis of the satellite, 

1
arctan arctan ,

2 2n n

a

l u


 
   

    
   

 (23) 

tm  is the mass of the tail panel, nm  is the mass of the nose panel, t   is the tail 

panel mass per unit area, n  is the nose panel mass per unit area, M  is the mass 

of the satellite body, u is the number of standard 1U units in the satellite, which 

are supposed to be arranged in a single row, /a l u  is the standard unit side 

length. 

 

Figure 3: CubeSat with deployable side panels. For clarity, only two panels are depicted. 

 

Figure 4: 3U CubeSats with nose and tail panels. 
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Table 1: CubeSat parameters 

Parameter Value 

Number of standard units u 3 

Satellite body length l 0.3 m 

Satellite body width a 0.1 m 

Reference area A 0.01 m2 

Satellite body mass M 4 kg 

Longitudinal moment of inertia of satellite body 0xJ  0.0067 kg·m2 

Transverse moment of inertia of satellite body 0zJ  0.0333 kg·m2 

Relative longitudinal shift of satellite body CoM b  −0.25 

Nose relative length n  1/3 

Tail panels relative length t  2/3; 5/6; 1 

Tail panels deployment angle   30° 

Nose and tail panels material Aluminum 

Nose and tail panels density 2700 kg/m3 
 

Let us analyze typical equilibrium positions and potential energy curves for 

the unperturbed motion on the example of three 3U CubeSats with pyramidal 

nose and tail panels of different lengths (Fig. 4). Their parameters are given in 

Table 1. Fig. 5 represents the dependencies of the positions of stable and unstable 

equilibria, s  and ,u  respectively, on the orbit altitude for the three CubeSats 

considered. Below a certain critical altitude, which for the discussed satellites is 

about 600 km, the aerodynamic torque prevails. As it tends to align the satellite 

along the orbital velocity vector, the position 0 0    is stable. After passing 

the critical altitude, the aerodynamic stabilization is no longer effective, and the 

gravity gradient torque, which tends to align the satellite along the local vertical, 

becomes more significant. For this reason, the satellites with relative panel 

lengths of 5/6 and 1 have two stable positions in the vicinity of −π/2 and π/2. 

Similar case has been considered in Ref. [48]. Note that in the case of short panels 

 2 / 3t  the intermediate stable equilibrium positions s  are determined 
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primarily by the aerodynamics of the satellite and exist even in low orbits (blue 

solid curves in Fig. 5). Unlike the satellites with long panels, the satellites with 

short panels have not only stable, but also unstable equilibrium positions u  (blue 

dashed curves in Fig. 5). In order to better illustrate the nature of these 

intermediate equilibrium positions, let us examine the torques acting on the 

satellite in the unperturbed motion and the corresponding potential energy sU  

(Fig. 6). Since both the aerodynamic and gravitational torques depend on the orbit 

altitude, in order to better illustrate the nature of these intermediate equilibrium 

positions, one needs to choose a particular altitude below the critical one. 

Hereinafter, we take the altitude equal to 250 km. Fig. 6,top represents the sum 

of aerodynamic restoring torque about the CoM of the satellite rM  and 

gravitational torque .gM Environmental parameters necessary to calculate the 

aerodynamic moment are taken from Table 2 for the case of high solar activity. 

It can be seen that the greater the length of the panels, the greater the magnitude 

of the sum of torques. At the same time, the tail panels length does not change 

the character of the given dependencies. The kinks in the graphs correspond to 

the angular positions where the shielding of some elements of the satellite begins 

or ends. Note that the shape of the restoring torque curves is consistent with the 

data of other researchers [35,50,51]. Fig. 6,top shows that in the case of short 

panels the sum of torques is positive when θ = π/2 and negative when θ = −π/2 

(blue curve in Fig. 6,top), and consequently, there are intermediate equilibrium 

positions. Fig. 6,bottom shows that for all considered panel lengths, the stable 

operational position 0  corresponds to a potential well, as it can be expected. At 

the same time, in the case of short panels, there exist additional local potential 

wells corresponding to the intermediate stable equilibrium positions. This case is 

of particular interest, so we will refer to the CubeSat with 2 / 3t  shown in Fig. 

4,a as the example CubeSat. Its other parameters are given in Table 1. In Fig. 7, 

the above-mentioned potential energy curve for the example CubeSat is shown 
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along with the phase portrait of the unperturbed system, which has two 

separatrices. The outer separatrix correspond to the unstable equilibrium 

positions     and the total energy .maxE U  The inner separatrix 

correspond to the unstable equilibrium positions u     and the total energy 

.uE U   The determination of these unperturbed separatrices is important for 

further study of chaos in the perturbed motion. This is due to the fact that, 

although the thickness of the chaotic layer depends in a complex way on the 

system parameters, near the separatrices, chaos will occur even if the chaotic 

layer width is small. 

In order to investigate the perturbed motion in the vicinity of the separatrices, 

one needs to derive the equations of motion of the system taking into account 

flexibility of the tail panels and the damping aerodynamic torque, which is the 

goal of the next section. 

 

Figure 5: Equilibrium positions of 3U CubeSats with nose and tail panels. For visualization 

purposes, the overlapping lines corresponding to 0  are shown separated.  
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Figure 6: Sum of gravitational and restoring aerodynamic torque and potential energy for 3U 

CubeSats with nose and tail panels (h = 250 km). 
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Figure 7: Potential energy, equilibrium positions, and phase portrait of the example CubeSat 

(h = 250 km). 

 

3. Equations of motion 

In this paper, we use four coordinate frames (Fig. 3): the orbital frame ,OXY  

the satellite body-fixed frame Cxy  and two panel-fixed frames 1 1 1O  and 

2 2 2.O    The angles   between the axes Cx  and 1 1O  and    between the axes 

Cx  and 2 2O   can also be regarded as the panel deployment angles. The 

coordinates of the pivot points of the panels 1O  and 2O  in the Cxy  frame are 

 , / 2cl a  and  , / 2 ,cl a  respectively, where  1/ 2 .cl    l    

The kinetic energy of the nanosatellite is composed of the kinetic energy of 

the satellite body bT  and the kinetic energy of the flexible side panels ,pT  

which are modeled as cantilever beams: 
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.b pT T T   (24) 

The kinetic energy of the attitude motion of the nanosatellite is defined as 

21
.

2b zT J    (25) 

The kinetic energy of the flexible side panels is 

 2 2
1 2

0

1

2

pl

p p pT dm  V V  (26) 

where p tl l  is the length of the panel, piV  is the velocity of a differential mass 

element of the flexible panel relative to the center of mass, i = 1, 2. According to 

Fig. 3, piV  can be written as 

1 1 1, [ , ]
2

T
T

p c

c s c sd a
l

s c s cdt

   
 

   

                        
V  (27) 

     2 2 2, [ , ]
2

T
T

p c

c s c sd a
l

s c s cdt

   
 

   

                        
V  (28) 

where ,i  i  are the longitudinal and transverse coordinates of the differential 

mass element dm  of the flexible panel, respectively. The deflection of the 

flexible panel is defined as 

1

( , ) ( ) ( ), 1,2
N

i i j i ij
j

t q t i  


    (29) 

where ( )ijq t  are modal coordinates, N is the number of modes considered, and 

( )j i are the shape functions. The following shape function is an acceptable 

candidate for a clamped beam [59]: 

1/2 1/2 1/2 1/2

( ) cosh cos sinh sinj i j i j i j i
j i j j

p p p p

B d
l l l l

       


  
           

 (30) 
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where jB  is an unessential constant multiplier taken so that   1,j pl      

1/2 1/2

1/2 1/2

cos cosh
,

sin sinh
j j

j
j j

d
 
 





 (31) 

j   is a nondimensional natural frequency. For a clamped beam, j  is defined 

by the equation [59] 

1/2 1/2cos cosh 1j j     (32) 

where ω1 = 3.51, ω2 = 22.03, ω3 = 61.70, ... are the roots of the equation (32). 

The potential energy of the satellite equals the sum of the potential energy of 

the satellite body and the flexible panels, and it can be written as 

     , , , ,i s p iU h U h U      (33) 

where 

 
222

2
10

,
pl

i
p i i

i i

U EJ d
 


  
      
  (34) 

EJ  is the bending stiffness of the flexible panels, E  is the Young’s modulus, J  

is the area moment of inertia of panel cross-section, 

3

,
12

ab
J   (35) 

b is the panel thickness, and the functions sU   and i   are defined by the 

equations (19) and (29), respectively. 

We use the Lagrangian formalism to write the motion equations of the system 

, 1, ,1 2n
n n

d L L
Q n N

dt s s

 
    

 
 (36) 

where L T U   is the Lagrange function, 11 21 1 2, , ,...( ),N Ns  q q q q  is the 
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vector of generalized coordinates, Q   is the vector of non-potential generalized 

forces. Let us consider only the case when 1,N   and taking into account Eqs. 

(16), (17), (19), (24)–(34) write the Lagrange function in the following simple 

form: 

   

 

2 2 2
1 2 1 2

2 2 2
1 2

1

1 1

2 2

1
cos cos

2

q q

k
j

a g q
j

L a a q q a q q

b
c j c c q q

j

  

 


    

   

    
 (37) 

where 

2
2 2

1

1
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3 2 2z tl p p p c c

a a
a J l l l l l   

             
     

 (38) 

1 sin cos ,
2q tl c 3

a
a l I +l +I          

 
(39) 

2
2 ,q tla l I  (40) 

2
4 ,q pc EJl I  (41) 

1zJ   is the total moment of inertia of the rigid parts of the satellite, tl  is the linear 

mass of a single tail panel, 

,t
tl

t

l

u




  (42) 

1 11 2 21/ , /p pq q l q q l   are the dimensionless modal coordinates, 

1 10
( ) ,

pl
I d    (43) 

2
2 10

( ) ,
pl

I d    (44) 

3 10
( ) ,

pl
I d     (45) 
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2
4 10

( ) ,
pl

I d    (46) 

 
1/2 1/2 1/2 1/2

1 cosh cos sinh sin ,
p p p p

B d
l l l l

       
  

          
 

(47) 

3.51, 0.734, 0.5006. d  B       The non-potential generalized forces are 

 ,0,0dQ M  (48) 

where the damping aerodynamic torque dM   is defined by Eq. (4). 

4. Numerical simulations 

In this section, the chaotic motion of a flexible CubeSat will be studied using 

Poincaré sections and Lyapunov exponents. Along with these tools, the Melnikov 

criterion is often used to determine the presence of chaos in a system. Melnikov’s 

theory allows to write the necessary condition for chaos [60,61]. However, the 

construction of the Melnikov criterion is difficult for the considered unperturbed 

system due to the lack of analytical expressions for its heteroclinic trajectories. 

 

 Table 2: Environmental parameters corresponding to an altitude of 250 km 

Parameter 

Value  

Low solar activity (SA) Mean SA High 
SA 

Air density  [10−11 kg/m3] 2.1 7.8 16 

Incident stream temperature T  [K] 690 890 1240 

Wall temperature wT  [K] 300  

 

All numerical simulations of the perturbed nonlinear attitude motion of the 

example CubeSat (Fig. 4,a) will be performed for a circular orbit with an altitude 

of 250 km, unless otherwise specified. The density and temperature of the 
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incident stream at this altitude are chosen using Jacchia-Bowman 2008 

Atmosphere Model [62] for different levels of solar activity. The temperature of 

the satellite’s surfaces is taken equal to 300wT   K  based on the energy balance 

between an aluminum satellite surface and the solar flux [63], which is consistent 

with actual in-orbit measurements for CubeSats [64]. For convenience, all 

environmental data used are gathered in Table 2. Fig. 8 shows typical 

dependencies of the restoring and damping aerodynamic torque coefficients on 

the angle of attack for the example satellite, calculated numerically using Eqs. 

(10) and (11), respectively, as well as the data from Table 2. Other parameters of 

the example CubeSat are given in Table 1. 

Fig. 9 depicts three trajectories on a phase plane ( ),   starting at the same 

point  0,0.0367  near the inner separatrix (see Fig. 7,bottom) and calculated for 

three different sets of initial conditions of the panels oscillations: 

10 20 10 20 10 200.007, 0.022; 0.002, 0.005; 0.019, 0.039.q q q q q q           

For all three cases, we take 10 20 0.q q    Each phase trajectory demonstrates that 

the damping torque dissipates the energy of the system and pulls the satellite into 

one of the potential wells. Even though the phase trajectories start at the same 

point, the satellite eventually oscillates about different stable equilibrium 

positions. In the first case, it is an intermediate trim position ,s   in the second 

case, it is the operational position 0 ,   and in the third case, it is another 

intermediate trim position .s     This qualitative difference between the 

trajectories is clearly due to the difference in the initial disturbances of the panels. 

Thus, Fig. 9 demonstrates that the perturbed system is sensitive to initial 

conditions, which is one of the attributes of chaos. Fig. 9 also shows that the 

oscillations of the satellite body have a high-frequency harmonic of small 

amplitude caused by the flexible panels. Fig. 10 illustrates the oscillations of the 

panels themselves, and it can be clearly seen that they oscillate in antiphase. For 
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convenience, we plot here the panels’ tips maximum deflections instead of non-

dimensional coordinates 1q  and 2.q  

Perturbations in the satellite angular motion due to the panels oscillations 

lead to a complication of the phase space and occurrence of a chaotic layer near 

the unperturbed separatrices. The intersection of stable and unstable manifolds 

can be revealed in the Poincaré plane [61]. Fig. 11 depicts Poincaré sections for 

the perturbed motion. Note that the phase trajectories simulated to plot the cloud 

of points start from the points lying in one of the intermediate potential wells near 

the separatrix. The fact that some of cross-section points appear in the central 

area between the saddle points u  and u  indicates that the phase trajectories 

cross the separatrix and pass from one potential well to another. Therefore, the 

occurrence of chaos in the perturbed system is verified. 

 

 

Figure 8: Coefficients of restoring (top) and damping (bottom) aerodynamic torques for the 

example CubeSat (h = 250 km, high solar activity). 
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Figure 9: Phase trajectories for the example CubeSat. 

 

 
Figure 10: Typical time histories of panel tips deflection for the example CubeSat. 

In addition to constructing Poincaré sections, the presence of chaos in the 

system can be confirmed by calculating the Lyapunov spectrum for individual 

trajectories. The Lyapunov exponents making up this spectrum characterize the 

evolution of trajectories in a certain volume near the trajectory under 

consideration in different directions of the phase volume. A numerical algorithm 

for calculating Lyapunov exponents is given, for example, in Ref. [65]. Chaotic 

motion must produce at least one positive Lyapunov exponent, hence it is 

sufficient to calculate only the maximum Lyapunov exponent. Fig. 12 shows 

maximum Lyapunov exponents for the phase trajectories starting at a saddle point 

( ),0u  without initial panels disturbances for three different orbit altitudes 
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assuming mean solar activity. All the exponents are positive, which indicates 

chaos. Note that at the altitudes 200 and 300 km the magnitude of the Lyapunov 

exponent is lower, so the chaotic effects are weaker than at 250 km. At lower 

altitudes, this is due to the increasing role of the damping aerodynamic torque. 

At higher altitudes, this is caused by an increase in the ratio between the 

frequencies of oscillations of the panels and the satellite body and, accordingly, 

by a decrease in the influence of the elastic oscillations of the panels on the 

attitude motion of the satellite. 

 

Figure 11: Poincaré sections for the example CubeSat: blue – start from right potential well, 

orange – start from left potential well. Solid black line represents the inner unperturbed separatrix 

(see also Fig. 7). 

Fig. 12 thus confirms that the previously chosen altitude of 250 km allows a better 

illustration of the chaos in attitude motion of the example satellite. Figures 13 

and 14 show maximum Lyapunov exponents for the phase trajectories starting at 

the same saddle points. Fig. 13 depicts the exponents calculated for three 

different levels of solar activity, and consequently, air density (see Table 2). It 

can be seen that, at a given altitude, the system is somewhat more prone to chaotic 

behavior when the incident stream density is low. This is due to the fact that, in 

this case, since the aerodynamic forces are weaker, the effect of the perturbations 
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caused by the oscillations of the panels increases. The exponents shown in Fig. 

14 are calculated for four different values of tail panels thickness. As in the 

previous case, all the exponents are positive, so the behavior of the system is 

chaotic. However, unlike the previous case, there is no monotonic dependence 

between the varying parameter and the maximum Lyapunov exponent. This can 

be explained by the high complexity of the system, in which the thickness of the 

panels affects a large number of system parameters, e.g., the frequency of the 

oscillations of the panels, moments of inertia, position of the CoM of the satellite. 

The latter, in its turn, strongly affects the aerodynamic coefficients. It has to be 

mentioned here that the problem of quantitative assessment of the propensity of 

the described system to chaotic behavior depending on various parameters is 

challenging, so the above numerical examples must be considered exemplary 

rather than exhaustive. 

Thus, numerical simulations confirm the possibility of chaos in attitude 

motion of a aerodynamically stabilized satellite with tail panels, even in low 

orbits. 

 

Figure 12: Maximum Lyapunov exponents for the example CubeSat at three different altitudes.  
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Figure 13: Maximum Lyapunov exponents for the example CubeSat at three different levels of 

solar activity. 

 

 

Figure 14: Maximum Lyapunov exponents for the example CubeSat with panels of four different 

thicknesses. 

5. Conclusion 

This paper reveals some features of the nonlinear attitude dynamics of 

CubeSats with deployable stabilizing panels in low orbits. It was shown that, in 

the presence of the intermediate unstable equilibrium positions, instead of 

stabilizing the attitude motion of the satellite, the oscillating panels may 

paradoxically destabilize it due to chaos. The satellite may get to one of the 

intermediate positions because of an accidental disturbance, e.g., during the 
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separation from the launch vehicle. Therefore, obviously, it is preferable to 

eliminate these positions at the design phase. In the cases where this is not 

possible, the risk of large disturbances causing angular oscillations of the satellite 

with large amplitudes should be minimized. Another way is to use additional 

devices (reaction wheels, magnetorquers, etc.) to compensate the undesirable 

aerodynamic features. The results of the paper can be used to select the 

parameters of these devices. It is also demonstrated that, for studying the attitude 

oscillations at high angles of attack, it is important not to neglect the damping 

aerodynamic torque, since, if the satellite has intermediate trim positions, 

damping may lead to qualitatively different motions. 

The future work will focus on certain related problems not covered in this 

paper. In particular, it is interesting to study a more general case of three-

dimensional attitude motion of CubeSats with flexible side panels in free 

molecular flow. This case may contain new chaotic effects related to the 

decomposition of the satellite rotation about the center of mass into nutation, 

precession, and spin. Another important area of research is the determination of 

the boundaries of chaotic regions in the phase portrait for different combinations 

of system parameters. Furthermore, the dynamics of panels deployment needs to 

be investigated. 
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