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Nomenclature 

m   = mass of the defunct satellite (space debris), kg  

J  = moment of inertia of the space debris, kg m
2
 

al   = length of the flexible appendage (panel), m 

ql   = distance between the attachment points of the flexible appendages and Coulomb forces application  

  points, m 

R  = distance between the mass center of the debris and the fixing points of the flexible appendages, m 

ql l R   

9 2 28.99 10 /ck Nm C  = Coulomb’s constant 

a aE J  = stiffness of the flexible appendages, Nm
2 

  = linear mass of the panel, kg m
-1

 
 

0 0 0O x y = orbital frame 

1 2
,p p  =  dimensionless transverse displacement of the flexible panels 

CV  = velocity of the space debris in the frame 0 0 0O x y  

  = pitch attitude angle 

s  = stable equilibrium position 

u  = unstable equilibrium position 

I. Introduction 

Electrostatic actuation in space has been proposed as early as 1966 by Cover et. al. [1]. Electrostatic force 

actuation for spacecraft formation control is a concept that is gaining significant attention in the field of formation 

flying [2,3]. Later Coulomb formation flying dynamics and control has been studied in numerous publications, for 

example [4-7]. Non-cooperative electrostatic control sees application in orbital space debris mitigation for bodies 
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such as defunct satellites. Orbital servicing is a challenging space mission concept that requires an active host 

vehicle to approach and mechanically interface with the defunct satellite or satellite component [8-11]. Multi- 

Sphere Method (MSM) is significant for its study of the behavior of bodies under the influence of the Coulomb 

forces. This method represents the complete spacecraft electrostatic charging model as a collection of spherical 

conductors dispersed through the body [8] to provide consistentcy between induced charging effects and finite 

element methods. Multi-Sphere Method can be applied for  the cylindrical body and for the body with attached 

flexible elements as shown in Fig. 1a. Visible are the electrostatic forces between spheres, the projection angle for 

the torque controller, and the inertial station keeping thrust. The three-sphere MSM approximation provides 

sufficient force and torque accuracy, within a percent of the finite element solution, for the considered separation 

distances [11]. The first step in the formulation of this problem was made Schaub and Stevenson, who showed a 

satellite with solar panels under the influence of Coulomb forces in Fig. 1 at the paper [8].   

The aim of the paper is study of influence of  flexible appendages on the satellite motion in the Columb 

interaction. The paper provides the mathematical formulations of  Lagrangian dynamics to demonstrate insightful 

analysis of the full rotating, translating, and flexing system. The work presents chaotic behavior that arises and 

additional reductions in the complete formulation to consider rigid body motion. The paper examines the possibility 

of the chaos in the attitude motion caused by small oscillations of the flexible appendages. The paper includes 

numerical simulations of the full dynamical system and the chaotic behavior cases. The equations of the planar 

motion of the satellite with the flexible appendages under the influence of Coulomb forces are obtained. Next, the 

satellite with the flexible appendages is considered as a rigid body. It is showed that in this case there are a stable 

and an unstable equilibrium positions. And deterministic chaos arises in a vicinity of the unstable equilibrium 

position in the presence of small perturbations in the form of oscillations of the flexible appendages. This research is 

important for understanding the influence of Coulomb forces on the motion of the mass center of the space debris 

with the flexible appendages. 

II. Mathematical Models 

A. The Three-sphere Electrostatic Model 

 

According to [8] the three-sphere Multi- Sphere Method is a means to approximate the electrostatic interactions 

between conducting objects with generic geometries. For  the Coulomb force's descriptions, the parameter 

designations are chosen as in [9].  Fig. 1 depicts a satellite with flexible appendages, modeled by 3 optimally placed 

spheres, in the vicinity of the active satellite as a thrust source. Both objects are assumed for now to be conducting 

and reside at voltage levels 1  and 2 . The voltage i on a given sphere is a function of the charge iq  on that 

sphere and the charges on its neighboring spheres. This relation is governed by Eq. (4) [8], where iR  represents the 



radius of the sphere in question and ,i j j ir r r   is the center-to-center distance to each neighbor. The constant 

9 2 28.99 10 /ck Nm C   is Coulomb’s constant. 
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These relations can be combined for each sphere to obtain the matrix equation 
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By inverting  
1

MC


, the charge on each sphere is determined at any instance of time. The charge redistribution 

and interaction with the space environment are assumed to be orders of magnitude faster than the spacecraft motion.  

The total electrostatic force is then given by the summations [8] 
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Fig. 1 The three-sphere model (a), frames, forces, coordinates (b) 

The studied mechanical system includes the active  satellite (space pusher), considered as a particle and the 

defunct satellite (space debris), as a rigid body with two flexible appendages. We suppose that the attitude motion of 

the space pusher is controlled by its attitude control system. We consider planar motion of the space debris around 



its center of mass and this center mass under the influence of only the Coulomb forses. We also assume that the 

distance between the bodies is fixed  br d const  , which is provided by an active satellite propulsion. Fig. 1a 

and equation (5) show that the stable position of the satellite corresponds to the pitch attitude angle 0  . Fig. 1b 

illustrates the geometry of the mechanical system relative to an orbital frame 0 0 0O x y  which is assumed to be fixed 

for a short period in comparison with the orbital period of the system.  

B. The Kinetic Energy and the Potential Energy 

The kinetic energy of the space debris is composed of the kinetic energy of the rigid body bT and the kinetic 

energy of the flexible appendages aT  

b aT T T         (6) 

The kinetic energy of the space debris is written as 

 2 21

2
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where m  is mass of the space debris, J  is a moment of inertia of the space debris,   is a pitch attitude angle. 

The velocity of the space debris in the frame 0 0 0O x y  is 
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The kinetic energy of the flexible appendages is 
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where al  is the length of the flexible appendage (panel), aiV  is the velocity of a differential mass element dm  of 

the flexible appendage 1,2i  . According to Fig. 1b, velocity of the element dm  is 
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where R is the distance between the mass center of the debris and the fixing points of the flexible appendages, 

, ii   are the longitudinal and transverse coordinates  for the differential mass element dm   of the  flexible 

appendage 1,2i   (Fig.1b). The deflection of the flexible appendage  is defined as 
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where ( )ijp t  are modal coordinates, N  is the number of the assumed modes considered, and ( )j i  are shape 

functions. The following shape function is an acceptable candidate for a clamped beam [12, Table 9.4] 
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where jC  is an unessential constant multiplier which is taken so that ( ) 1j al  , 
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where j  is a nondimensional natural frequency. For the fixed-free beam j  defined by the equation [19] 

1/2 1/2cos cosh 1j j         (14) 

where 1 2 33.51, 22.03, 61.70,      are roots of the equation (14). 

The potential energy of the space debris equals the potential energy of the flexible appendages that are 

considered as beams, and it can be written as 
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where a aE J  is stiffness of the flexible appendages, i  is defined from the equation (12). 

C. Lagrange Motion Equations of the Center Mass and of Attitude Motion 

We use the Lagrangian formalism to write the motion equations of the system 
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where L T U   is the Lagrange function, 
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s x y p p p p  are the generalized coordinates, 

i
Q  are generalized force corresponding to the generalized coordinate 

j
s . 

We consider only the case when 1N  , and taking into account (6) - (15) the Lagrange  function can be written 

as 
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where   is a linear mass of the panel, 
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p p l p p l  are the dimensionless transverse 

displacement of the flexible panels [13] 
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where 13.51, 0.81d   . Note, that exact closed form results are available in the literature, for integrals (18) to 

(21) for clamped-free beam modes such as the one given in (22) as well as for other boundary conditions [13]. Since 

these integrals are calculated only once for a panel, therefore it does not have a great value how to calculate them 

analytically or numerically.       

Next, taking into account (5) we define the generalized forces as 
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These equations are non-trivial due to the complexity of the determining Coulomb forces (5) by the matrix (2) 

and (3), and to obtain analytical solutions we used  the symbolic manipulator MATHEMATICA [14]. After some 

additional transformations  the generalized forces (23) are written as 
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The torque of the Coulomb forces (24) is the cause of the oscillatory motion of the satellite. Equation (27) 

determines the approximate value of the function (22) [15, Eq. (34)] for the centers of the spheres A and C. 

For this manuscript’s simulations, system parameters are chosen as in Table 1. Assume first that both bodies 

have the same potential magnitude 
2 1   . Figs. 2, 3 shows the time history of  the pitch attitude angle   and 

1c ak q q (dotted line), 1c ck q q (solid line)  at various separation distances 15d m  and 3.2d m .  The initial 

conditions are chosen as: 
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Table 1  Parameters of the system 

Parameter Value Parameter Value Parameter Value 

2,  J kgm  1000 ,  l m  1.1569  
1,  kgm   10 

2 1 ,kW    20 ,  al m  2 
2,a aE J Nm  9.2 

1,  R m  0.5 2, 2, ,a cR R  0.5909 2, ,bR m  0.5909 

,  R m  0.5     
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Fig. 2 Time history of  the pitch attitude angle   (a) and 

1c ak q q ( dotted line), 1c ck q q (solid line) (b)  for 15d m  

 

(a)  

 

(b) 



 
 

Fig. 3 Time history of  the pitch attitude angle   (a) and 

1c ak q q ( dotted line), 1c ck q q (solid line) (b)  for 3.2d m  

 

It  can be seen a in-zoom (Figs.2a and 3a)  that the pitch angle oscillations have a high-frequency harmonic of 

small amplitude caused by the flexible appendages. Under certain conditions, when the pitch attitude angle   is in a 

small neighborhood of unstable equilibrium positions 
2

u


  , the behavior can become chaotic. This will be 

shown in section IV below. 

The pitch torque is created two electrostatic forces 
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And the parameters  

1c ak q q  ,  1c ck q q       (30) 

are determined the flow of an electrostatic charge due of  the pitch attitude angle  . Figs. 2, 3 shows that for the 

longer distance 15d m  these parameters vary slightly with time, and hence with the pitch attitude angle. In the 

future, this property will allow us to simplify the equations of the attitude motion. 

III. The satellite as rigid body. Phase Equilibrium Positions and Space Trajectories  

A motion will be called the Rigid Body Motion  if the satellite has the absolutely rigid appendages  
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and one can write down generalized force as 
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which as can be seen from Fig. 1 becomes zero at the points 
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Fig. 4 depicts the phase trajectories for the Rigid Body Motion.  Obviously the points  

0s k         (35) 

correspond to the stable equilibrium position, and the points, 

2
u k


         (36) 

correspond to the unstable equilibrium position. 

 

 

Fig. 4  The phase trajectories     for  15d m   

 

The action of small perturbations, as shown in Fig. 2a,  caused by transverse vibrations of the flexible 

appendages in the vicinity of unstable equilibrium positions can lead to deterministic chaos. 

IV. Chaotic behavior of the Satellite with Flexible Appendages   

As in Section II, we consider the motion of the satellite with flexible appendages.  One can illustrate the 

deterministic chaos by considering a trajectory that starts in a small neighborhood of an unstable equilibrium 

position  (36) 
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The system parameters are chosen as in Table 1. We also set the separation distance 3.2d m . Fig. 5  shows that 

during a period of 50,000 sec,  the satellite with flexible appendages performed rotation in different directions and 

oscillations in different phase areas: 
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Note, if there were no flexible oscillations of the attached appendages, then the satellite would oscillate relative 

to a stable equilibrium position 0s   in the area 1 and remain there always. Consequently, a tumbling of the 

satellite, which we see in Fig. 5, is caused by the  small oscillations of the appendages. 

 (a) 

 
 

(b) 

 

 

Fig. 5 Time history of  the pitch attitude angle   (a), the phase trajectories      (b)  

 

It can be noted that carrying out a more complete analysis of the chaotic behavior of the system by constructing 

Poincaré surfaces, computing Lyapunov exponents, or Melnikov functions requires multiple computations of the 

trajectories. 

The three-sphere MSM [8] describes the complex nature of the electrostatic interaction of two bodies. However, 

the numerical implementation of this method includes complex vector-matrix transformations (2)-(5). This feature 



of the method leads to large computing times. Therefore, here we confined ourselves to studying only one trajectory 

of the motion of the satellite with flexible appendages. 

V. A Simplified Mathematical Model of the Attitude Motion 

Fig. 2b shows that for the  distance between the body 1 and 2 15d m   we can neglect the electrostatic charge 

flows  for a preliminary analysis of the attitude motion of the body 1. We introduce the relative length of the flexible 

appendages as 

l

d
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and for 

1         (39) 

one can accept that 

1 1c a c ck q q k q q n const         (40) 

Then the Coulomb forces  for the spheres 2a and 2c (Fig. 1) can be given by simple formulas 
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Taking into account (41)  for the three generalized coordinates  
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the generalized forces (23) can be written as 
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For the three generalized coordinates (42) the Lagrangian (17) takes the form 
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where the generalized stiffness of the flexible panels is defined as 



4p a ac E J        (48) 

and  the generalized masses can be written as 

2
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The generalized forces (43)-(45) are quite complicated due to the presence in them the square polynomials of 

negative fractional degree  (46). Assuming that (39) is satisfied  we expand the generalized forces (43)-(45) in the 

power series of   
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Then the simplified equations of the attitude motion can be written in a very compact form  
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22 2pp ppa pa cp Q          (58) 

Considering the attached appendages as absolutely rigid   1 20, 0p p  , we obtain the electrostatic torque 

as 
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 The simulation was performed for the parameters listed in Table 1 and under the initial conditions (28) for 

separation distances 15d m  0 07/ . 7l d   . The initial conditions are chosen so that the pitch attitude 

angle   remains small: 

0 0 1 1 2 20.1, 0, 0.1, 0.000227, 0, 0p p p p            

Figs. 6 shows the time history of  the pitch attitude angle   and 1c ak q q ( dotted line), 1c ck q q (solid line)  

for separation distance 15d m .  It follows from Fig. 6b that the functions 1c ak q q  and 1c ck q q  vary 

periodically about the value 
20.009336176n Nm  and the amplitude of the oscillation is quite small. Fig. 7 

shows the results of numerical integration of the simplified Eqs. (56)-(58) and we can see very good agreement with 

the results of integrating the fully coupled model (16), presented in Fig. 6a. 

a) 

 

b)  

 

Fig. 6 Time history of  the pitch attitude angle   (a) and 

1c ak q q ( dotted line), 1c ck q q (solid line) (b)  for 15d m  

 

 

 



 
 

Fig. 7 Time history of  the pitch attitude angle   for the simplified equations (56)-(58)  

 20.009336176 , 077, 0.15n d mNm     

 

Note that when using the simplified Eqs. (56)-(58), the computational volume is reduced by an order of 

magnitude  in comparison with the fully coupled model (16).  

 

VI. Conclusion 

The attitude dynamics of the defunct satellite with the flexible appendages under  action of the Coulomb forces 

was studied for active space debris removal. An electrostatic interaction is significantly influenced by the relative 

position of the defunct satellite. Using the multi-sphere method [8], the equations of the planar motion of the 

satellite with the flexible appendages under the influence of the Coulomb forces were obtained. The main features 

associated with the influence of the small oscillations of the flexible appendages were identified  by numerical 

simulation of the fully coupled model. Next, the satellite with the flexible appendages is considered as a rigid body. 

Stable and unstable equilibrium positions were found. By numerical simulation, it was shown that the deterministic 

chaos arises in the vicinity of an unstable equilibrium position in the presence of small perturbations in the form of 

oscillations of flexible appendages.  This chaos leads to unpredictable consequences, when the satellite with the 

flexible appendages can begin to tumble. For the case when the separation distance d  is much larger than the 

length of l , the simplified model of the attitude motion was proposed. The use of this model requires considerably 

less computational costs than the fully coupled model. However this model can be used only in the case of small 

pitch attitude angle. Otherwise full model presented in Section II should be applied. 

In general, we believe that the above research can provide good results for a study an opportunity of  the space 

debris removal by the Coulomb interaction with the active spacecraft. Future work will expand the control to impact 

general three-dimensional rotational motion. 
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