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Abstract

The paper considers the contactless transportation of space debris by means 

of an ion beam generated by an active spacecraft electrodynamic engine. The 

three-dimensional motion of a space debris object relative to its center of mass is 

studied.  Space debris is assumed to be a dynamically symmetric cylindrical rigid 

body. The aim of the paper is to develop a control of the engine thrust, which 

ensures the stabilization of spatial oscillations of cylindrical space debris. A 

simplified mathematical model describing the motion of a dynamically symmetric 

rigid body in a Keplerian orbit is developed. For the case of a circular orbit, 

stationary motions relative to the center of mass are found. A feedback control law 

for the thrust of an electrodynamic engine creating an ion beam, which is aimed at 

stabilizing the space debris object in a stationary angular position, is proposed. The 

results of numerical research confirm the effectiveness of this control. The research 

results can be used in the preparation of space debris removal missions.
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control law
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1. Introduction

Developing of active space debris removal systems is one of the most 

important challenges facing the space industry today. Despite the fact that the 

problem has been actively discussed by the scientific community for several 

decades (Bonnal and Alby, 2000; Klinkrad et al., 2004; Shan et al., 2016), the 

situation with space debris in orbit continues to deteriorate (NASA, 2021). Back in 

1978, a dramatic scenario in which collisions of large space debris could trigger a 

chain reaction that would exponentially increase the flow of space debris and make 

it impossible to use orbits was described (Kessler and Cour-Palais, 1978). In 2009, 

the collision of Cosmos 2251 and Iridium 33 led to the formation of clouds of 

debris, some of which will remain in orbit until 2090 (Pardini and Anselmo, 2011). 

For space debris objects, various indexes are proposed, reflecting their potential 

hazard based on an analysis of various factors (Letizia et al., 2019; Pardini and 

Anselmo, 2020; Rossi et al., 2015). These indices allow selecting the objects to be 

removed first. The growth of the population of space debris leads to the 

complication of the operating conditions of space vehicles. T. Maclay and D. 

McKnight propose "Space Environment Management" concept, consisting of both 

debris mitigation and debris remediation, as response to growing threat to space 

safety (Maclay and McKnight, 2021). Currently, a large number of various active 

space debris removal projects are actively discussed in the scientific literature 

(Mark and Kamath, 2019). All these projects can be conditionally divided into 

three groups: systems involving docking/capturing and hard mechanical contact of 

an active spacecraft-cleaner and passive space debris object (Baranov et al., 2021; 

Hakima and Emami, 2021); systems involving remote capture and subsequent 

transportation of a space debris object on a tether (Aslanov, 2016; Zhong and Zhu, 

2016); and systems that do not involve direct mechanical contact. The main 

advantage of contactless transportation systems is their safety. The absence of 

mechanical contact reduces the risk of an accident when capturing space debris. In 

addition, contactless methods can be used to space debris detumbling, which is 



3

critical for the first two contact transport methods (Bennett and Schaub, 2018; 

Nakajima et al., 2018; Yu et al., 2021).

Contactless transportation of a space debris object can be performed in 

various ways. Space based lasers can be used for this purpose (Ivakin et al., 2019; 

Peltoniemi et al., 2021). The transfer of force to a passive space debris object can 

be carried out by means of electromagnetic (Yu et al., 2021), electrostatic (Schaub 

and Moorer, 2012) or gravitational fields (Aslanov, 2019). Another promising 

method is the use of an ion beam generated by the electrodynamic thruster of an 

active spacecraft. Hitting into the surface of space debris, ions transfer their 

impulse to it, thus generating a force impact. This ion beam space debris removal 

scheme was proposed independently by C. Bombardelli and J. Pelaez (Bombardelli 

and Peláez, 2011) and S. Kitamura (Kitamura, 2010; Kitamura et al., 2014). The 

motion of a passive object of space debris during its contactless transportation by 

an ion beam is considered in this study. The concept "Ion Beam Shepherd", which 

was developed by the team LEOSWEEP under the FP grant (Alpatov et al., 2019), 

is taken as a basis.

To date, the process of contactless space debris removal by an ion beam 

without taking into account the motion of space debris relative to the center of 

mass is investigated in detail (Bombardelli and Peláez, 2011; Cichocki et al., 

2017). The control law of an active spacecraft (Alpatov et al., 2018; Khoroshylov, 

2020), and methods for choosing the parameters of a space debris removal mission 

using an ion beam are proposed (Urrutxua et al., 2019). Optimization of the 

mission of sequential deorbiting of several space debris objects and optimization of 

the parameters of a spacecraft based on the Express-1000NV platform are 

considered in (Obukhov et al., 2021). The influence of angular oscillations of 

cylindrical space debris object on the transportation process in the planar case is 

studied in papers (Aslanov et al., 2020; Aslanov and Ledkov, 2017). Several 

control laws for the ion velocity and ion beam axis direction, which are aimed at 

stabilizing the angular oscillations of space debris object, are proposed in (Aslanov 

and Ledkov, 2020) for the planar case of motion. It is shown that the angular mode 
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of motion has a noticeable effect on the time taken to remove space debris from 

orbit (Aslanov and Ledkov, 2017), and that control of the angular oscillations of 

space debris can lead to noticeable fuel savings (Popov et al., 2020). The control 

algorithm for space debris detumbling in spatial case is proposed in (Nakajima et 

al., 2018).The planar case of motion is ideal, it is not realizable in practice due to 

the presence of external disturbances. Therefore, of practical interest is primarily 

the spatial case of the motion of space debris relative to the center of mass. 

Previous studies have shown that in the case of planar motion, the transport 

of space debris in the equilibrium position is more efficient in terms of minimizing 

the space debris removal time than in the case of oscillations (Aslanov and 

Ledkov, 2017; Popov et al., 2020). The purpose of this work is to develop a control 

of the engine thrust, which ensures the stabilization of spatial oscillations of 

cylindrical space debris. To achieve this goal a mathematical model of the space 

debris and active spacecraft 3D motion is developed in this study. A stationary 

mode of angular oscillations under the action of gravitational and ion torques in the 

case of unperturbed motion of the space debris center of mass in a circular orbit is 

found. A feedback control law that transfers space debris to the stationary mode is 

proposed. Numerical simulations and analysis are performed.

2. Mathematical model

A mechanical system consisting of a space debris object and an active 

spacecraft (ion beam shepherd) is considered in this study. The space debris is a 

rigid body with a shape close to a cylinder. Many satellites and rocket stages have 

this shape. An active spacecraft is a material point. In addition to the main 

propulsion system, this spacecraft is equipped with a low thrust electrodynamic 

engine that creates an ions flow to transfer a force on the surface of the space 

debris object. These force and torque will be referred to below as ion force and ion 

torque. It is assumed that the system motion occurs under the action of 

gravitational forces and torques, the thrust force of the active spacecraft’s engines, 
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as well as the force and torque generated by the ion beam on the space debris 

surface.

The study requires the definition of multiple coordinate systems shown in 

Fig.1. The origin of the planetocentric frame  is the center of the Earth. p p pOX Y Z

The axis  is directed along the Earth's rotation axis. Axes  and  lie in pOY pOX pOZ

the equatorial plane. This coordinate system is inertial. The origin of the orbital 

reference frame  coincides with the center of mass of the space debris o o oBX Y Z

object. The axis  the axis is directed from the center of the Earth to the oBZ

spacecraft center of mass, the axis  is parallel to the plane  and it is oBX p pOX Z

directed towards the orbital flight, the axis  completes the right-hand triad. oBY

Transformation from planetocentric frame  to orbital frame  can p p pOX Y Z o o oBX Y Z

be performed by two rotations: the positive rotation around the axis  on the pOY

angle , and the negative rotation (clockwise) around the axis  on the angle f oOX

(Fig.1). It should be noted that  is different from the conventional orbital v o o oBX Y Z

reference frame, which requires one more rotation in order to direct  axis oBX

tangentially to the orbit. The axes of the body frame  are principal body b b bBX Y Z

axes. The orientation of the body frame relative to the orbital frame can be 

specified by three Euler angles  , , and  (rotation sequences is xzx). The � � �

reference frame  shown in the Fig. 1 is obtained by rotating the orbital 1 1oBX Y Z

frame  by  angle about  axis.o o oBX Y Z �
oBX

To translate the coordinates of a vector from one coordinate system to 

another, rotation matrices are used

,i j
ij=r M r

where  is a vector given by its coordinates in the i-th coordinate system,  is a ir jr
vector given by its coordinates in the j-th coordinate system,  is the rotation ijM
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matrix, which provides transformation from j-th frame to i-th frame. The 

superscripts of the vectors are used to indicate the coordinate system in which their 

Fig. 1. Mechanical system and reference frames. 

components are specified. All rotation matrices and detailed description of 

reference frames used in this study are given in the appendix.

2.1 Equations of translational 3D motion

The motion of the active spacecraft and the center of mass of the space 

debris can be described by Newton's law

, (2)p p p
A A Am = +r G P��

, (3)p p p
B B B Im = +r G F��

where ,  are the mass of the spacecraft and the space debris object,  is the Am Bm jr

position vectors of j-th point, the superscript  indicates that the vectors are in the p

planetocentric frame ,  is the gravitational force acting on p p pOX Y Z 3
jp p

j j
j

m
r
�

= 	G r

j-th point,  is gravitational constant of the Earth,  is the total thrust of the � P
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active spacecraft’s engines,  is the ion beam force. It is assumed that the thrust IF

force and ion beam force are given by its components in the orbital frame o o oBX Y Z

, . (4)[ , , ]o T
x y zP P P=P [ , , ]o o o o T

I ix iy izF F F=F

The rotation matrix  given in the appendix is used to convert these vectors to poM

the coordinate system : p p pOX Y Z

,  . (5)p o
po=P M P p o

I po I=F M F

The position vector of the active spacecraft can be found as the sum

, (6)p p p p o
A B B po= + = +r r ρ r M ρ

where  is the spacecraft’s position vector in orbital coordinate [ , , ]o T
A A Ax y z=ρ

frame,  is the space debris center of mass position vector, which has following p
Br

components in p p pOX Y Z

. (7)[ sin cos , sin , cos cos ]p T
B r f r r f
 
 
=r

Substitution of (6) into (2) and expression of the second derivatives  ,  ,   Ax�� Ay�� Az��

from the projections of (20) gives

 (8)
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Calculating the derivatives and solving equation (3) for the second derivatives 

yields
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Equations (8) and (9) describe the motion of the centers of mass of the 

considered mechanical system elements. The ion force projections on the right-

hand side of equations (9) depend on the orientation of the space debris object in 

the ion beam; therefore, the system of equations (8) - (9) should be supplemented 

with equations of the space debris attitude motion.

2.2 Equations of the space debris attitude 3D motion

The attitude motion of the space debris object can be describes using Euler’s 

equations (Schaub and Junkins, 2014) 

 , (10)
b

b b b bB
B G I

d
dt

+ × = +
H ω H L L

where  is the angular momentum vector about the space debris object [ ]b b
B =H I ω

center of mass ,  is the space debris angular velocity,  is the B [ , , ]b T
x y z� � �=ω [ ]I

inertia matrix,  is the gravity gradient torque,  is the ion beam b
GL [ , , ]b T

I Ix Iy IzL L L=L

torque relative to the center of mass of the space debris. All vectors are given by 

their components in the body reference frame.

The angular velocity vector  is the sum of the angular velocity vectorsbω

,  (11)b b b b b b o p o b b
v f bo v bp f bo� � � � � �= + + + + = + + + +ω ω ω ω ω ω M ω M ω M ω ω ω

where , , ,  , [ ,0,0]o T
v 
= 	ω � [0, ,0]p T

f f=ω � [ ,0,0]o T
� �=ω � [0, sin , cos ]b T

� � � � �=ω � �

, the rotation matrices  are given in the appendix. Transferring all [ ,0,0]b T
� �=ω � ijM

vectors to the body coordinate system, from (9) it follows



9

, (12)
( )

( ( ) ( ))
( ( ) ( ))

b

c c f c s c s s s
s s c c s f c c c c s s s s c c c s

c s s s s f c s c c c s s c c s c s

� � 
 � � 
 � �

� � � � � 
 � � � � � 
 � � � � �

� � � � � 
 � � � � � 
 � � � � �

� � 

� � 

� � 


� �+ 	 + +
� �

= 	 + + 	 + +� �
� �+ 	 + 	 + + 	� �

ω

�� � �
�� � �
�� � �

where , .cosc� �= sins� �=

The gravity gradient torque is given by the equation (Schaub and Junkins, 

2014) 

, (13)5 3

( )
3 3[ ] ( )

( )

z y y z
b b b
G x z x z

y x x y

I I r r
I I r r

r r
I I r r

� �
� �	
� �= × = 	� �
� �	� �

L r I r

where center of mass vector  ,  , ,  are [0 0 ] [ ]b T T
bo x y zr r r r r= =r M xI yI zI

principle moments of inertia of the space debris object. Equation (10) can be 

reduced to

 (14)

3

3

3

3 ,

3 ,

3 .

y z Ix
x y z y z

x x

Iyz x
y x z x z

y y

x y Iz
z x y x y

z z

I I Lr r
I r I

LI I r r
I r I

I I Lr r
I r I

�� � �

�� � �

�� � �

	 � �= 	 +� �
� �

	 � �= 	 +� �
� �

	 � �= 	 +� �
� �

�

�

�

Equations (12), (14) describe the attitude motion of the space debris object under 

the action of the gravitational and the ion beam torques.

2.3 Equations of a symmetrical space debris attitude motion in R-G variables

Consider the case of motion of a symmetrical space debris object. It is 

assumed that , and the center of mass of the space debris moves in a y zI I I= =

plane , . Following the approach described in the book (Aslanov, 2017), 0
 = 0
 =�

new variables are introduced based on the classical Lagrange case of motion of a 

body with a fixed point. In the Lagrange case the generalized momentum 

corresponding to rotation and precession angles are integrals of motion. In the case 

of perturbed motion, these quantities will be slowly changing functions
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, , (15)x xR I �= cos ( sin cos )sinz yG R � � � � � �= + 	

where . Expression the angular velocities from (12) and (15) gives/x xI I I=

(16)

,

( )
( ),

( )
( ),

x
x

y

z

R
I

G Rc c
s fs c s s c

s
G Rc s

c fc c s s c
s

� �
� � 
 � 
 �

�

� �
� � 
 � 
 �

�

�

� �

� �

=

	
= 	 	 	

	
= + 	 	

��

��

, (17)2

( )fc c c s sG Rc
s s

� 
 � 
 ��

� �

� 

+	

= + +
�

� �

. (18)2

( )( )

x

f c c s sR G Rc c
I s s


 � 
 �� �

� �

�
+	

= 	 	
�

�

After substituting equations (16) in (14), expressing the derivatives yields

. (19)2
2

2 ,
o o

ix iz

B B

fr F Ff r f r
r rm r m

�
= 	 + = 	 +

���� ���

, (20)2

cos cos cos
sin sin

G R f� � ��
� �

	
= +

�
�

. (21)2

( cos )cos cos
sin sinx

R G R f
I

� � ��
� �

	
= 	 	

�
�

(22)

2 2

3

2

2 3

( cos )( cos ) cos cos
sin sin

2 cos ( cos ) 3 sin cos sin ( ) ,
sin

I x

G R R G f

f G R L I I
I r I

� � � ��
� �

� � � � � �
�

	 	
+ =

	 	
+ + 	

���

�

(23)0,R =�

 (24)

2

2

3

sin ( cos ) cos sin cos
sin

3 cos sin sin ( ) ,x

f G RG f f

I I
r I

� � � � � �
�

� � � �

	
= + 	

	
	

� � �� �
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where  is the projection of the ion torque on the  axis of cos sinI Iz IyL L L� �= + 2BZ

 frame, which is described in the appendix. In the case of an axisymmetric 3 2bBX Y Z

body,  projection does not depend on the angle . IL �

Consider the case when the center of mass moves in an elliptical orbit.

, , (25)
1 cos

pr
e f

=
+

2(1 cos )f n e f= +�

where ,  is the length of the semi-major axis of the orbit.  The motion 3n a� 	= a

of space debris relative to the center of mass is determined by the equations

(26)

2 4 2

3

2 2 2 3

2

( cos )( cos ) (1 cos ) cos cos
sin sin

2 (1 cos ) cos ( cos ) 3 sin sin 2 ( )(1 cos ) ,
sin 2

I

x

G R R G L n e f
I

n e f G R n I I e f
I

� � � ��
� �

� � � �
�

	 	 +
+ = +

+ 	 	 +
+ 	

��

 , (27)
2

2

cos (1 cos ) cos cos
sin sin

G R n e f� � ��
� �

	 +
= +�

(28)

2
2 4

2 2 3
2

(1 cos ) sin ( cos ) (1 cos ) cos sin
sin

3 cos sin sin ( )(1 cos )(1 cos ) cos ,x

n e f G RG n e f

n I I e fn e f
I

� � � �
�

� � �� �

+ 	
= + +

	 +
	 + 	

�

�

, (29)
2

2

( cos )cos (1 cos ) cos
sin sinx

R G R n e f
I

� � ��
� �

	 +
= 	 	�

where =const.  The angle  is not contained in equations (26)-(28), therefore, R �

these equations can be integrated separately from equation (29). Using the 

generally accepted approach, let us pass from time to a new independent variable 

. It also assumed thatf

, , (30) ,2R nk R= 2G nk G=

where . After passing to a new independent variable, the equations 1 cosk e f= +

take the form
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(31)

2

3 2 4

2

2

( cos )( cos ) cos cos
sin sin

2cos ( cos ) 3sin sin 2 ( ) 2 sin ,
sin 2

I

x

G R R G L
In k

G R I I e f
Ik k

� � � ��
� �

� � � � �
�

	 	�� = 	 + +

�	 	
+ 	 +

 (32)
2 2

2 2sin ( cos ) 3sin 2 sin ( )cos sin cos ,
sin 2

xk G R I I kG k k
I

� � � �� � � �
�

	 	� �= + 	 	

, (33)2

cos cos cos
sin sin

G R � � ��
� �

	� = +

In the case of circular orbit , , and equations (31)-(32) take form0e = 1k =

(34)

2

3 2

2

2

( cos )( cos ) cos cos
sin sin

2cos ( cos ) 3sin sin 2 ( ) ,
sin 2

I

x

G R R G L
In

G R I I
I

� � � ��
� �

� � � �
�

	 	�� = 	 + +

	 	
+ 	

(35)
2sin ( cos ) 3sin 2 sin ( )cos sin cos ,

sin 2
xG R I IG

I
� � � �� � � �

�
	 	� �= + 	 	

The equations obtained in this way describe the attitude motion of the space debris 

object in the case when its center of mass moves in Keplerian and circular orbits.

2.4 Stationary motions of symmetrical space debris

In order to find stationary motions, we consider motion of the space debris 

object in a circular orbit and equate the derivatives to zero: , , , 0G� = 0� �� = 0� � =

. From equation (33) it follows that0� � =

, (36)* *
*

* *

coscos
cos sin
R G��

� �
	

=

(37)

(2) 2
* * * * * * *

3 2
* *

2
* * * * *

2
*

( cos )( cos ) ( ) cos cos0
sin sin

2cos ( cos ) 3sin sin 2 ( ) ,
sin 2

Iz

x

G R R G L
In

G R I I
I

� � � � �
� �

� � � �
�

	 	
= 	 + +

	 	
+ 	

(38)
2

* * * * *
* *

*

sin ( cos ) 3sin 2 sin ( )0 cos sin ,
sin 2

xG R I I
I

� � � �� �
�

	 	
= + 	

where the star index indicates stationary motion. Equation (38) yields
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. (39)
2

* * * *
*

*

cos 3sin cos ( )cos 0
sin

xG R I I
I

� � ��
�
	 	

+ 	 =

another solution of this equation  contradicts the equation (36). *sin 0� =

Substitution of (36) into (39) gives

(40)* * * * *

* *

3sin ( cos )( ) sin 0
cos cos

xG R I I G
I

� � �
� �

	 	
	 =

From here we define 

. (41)*
*

3cos ( )
3 4

x

x

R I IG
I I
� 	

=
	

From (36) and (41) it follows that

, (42)*
*

cos
(3 4 )sinx

RI
I I

�
�

= 	
	

Substitution of (41) and (36) into (37) yields

. (43)2
* * *( ) 3 ( )cos sin 0I xL n I I� � �	 	 =

The last equation expresses the equality of the gravitational gradient and the ion 

torques. The solutions of equation (40) depend on the form of the function , *( )IL �

which in turn depends on the shape of the body and the ion beam parameters. The 

solution to this nonlinear equation should be searched numerically for a specific 

space debris object under consideration. Depending on the view of function , the IL

equation (43) can have a different number of roots. Once solutions are found, the 

corresponding values of  and  can be determined from equations (41) and (42) *G *�

respectively.

3 Space debris attitude control

It is assumed that during the motion, the spacecraft’s control system keeps it 

in a constant position relative to the space debris , , . Ax d const= = 0Ay = 0Az =

The axis of the ion flow is always directed to the space debris object center of 
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mass. To control the attitude motion of space debris, we will control the thrust of 

the engine that creates the ion beam. In this case, the ion torque can be defined as

, (44)I max( , , , ) ( )IL u G L� � � ��=

where  is dimensionless control parameter, which is proportional to the [0,1]u�

square rate of the ions velocity and can be changed by the voltage in the thruster. 

The value  corresponds to the off engine, and the value  corresponds to 0u = 1u =

the engine turned on at full power . To calculate the dependence of I max ( )IL L �=

the ion torque  on the angle , an author’s Matlab implementation of the I maxL �

computational procedure described in detail in (Alpatov et al., 2019; Aslanov and 

Ledkov, 2017) is used. The surface of the object blown by the ion beam is divided 

into triangles and the force effect of the ions on each of them is calculated. Then 

summation is performed. 

To control the space debris attitude motion, it is proposed to use the 

following feedback control law, which puts the system in a stationary motion mode

 (45)
0, when 0;

, when 0 1;
1, when 1;

u
u u u

u

��
 = < <"
 #$

where 

, (46)( )
2 4

* * *
I max

1 ( ) ( ) ( )
( )G

In ku k k k k G G
L� �� � � � �

�% �= + 	 	 + 	 + 	

where  are control law parameters. To determine the control law parameters, the jk

cost function is introduced in the form

, (47)
2 2 2 2

* * *( , , , ) ( ) ( ) ( )G Tav Tav Tav TavF k k k k G G� � � � � � �% �= 	 + + 	 + 	

where , , ,  are average values of the variables calculated for the Tav� Tav� � Tav� TavG

last period of oscillations. To calculate this function, the system of equations (33)-

(35) is numerically integrated with the specific values , , ,  transferred k� k%
k� Gk

as parameters. Integration is performed on an independent variable interval of ten 
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periods. Then the last period is taken, and the amplitude values of the variables for 

this period are found. The arithmetic mean values for these amplitude values are 

substituted into the formula (47) as , , , .  To find a set of control Tav� Tav� � Tav� TavG

parameters , , ,  that ensure the minimum cost function (47), the Nelder-k� k%
k� Gk

Mead method (Lagarias et al., 1998), which is implemented in Matlab as 

FMINSEARCH, is used in this study. The efficiency of using the proposed control 

law will be demonstrated in the next section.

4 Numerical simulation results

As an example, let us consider the deorbiting of a hypothetical rigid body, 

close in shape to the Cosmos upper stage, using an ion beam. Cases of 

uncontrolled and controlled motion will be compared bellow. It is assumed that 

space debris mass , moments of inertia ,1400kgBm = 21300kg mxI = &

, the length of the stage is 6m, its diameter is 2.4 m. The 26800kg my zI I I= = = &

center of mass of the space debris lies on the axis of symmetry and is shifted to the 

lower end by 0.5 m. The active spacecraft mass . The distance between 450kgBm =

the spacecraft and space debris center of mass . The ion beam axis 15md =

velocity is 38000 m/s, plasma density is , ion beam divergence angle is 162.6 10&

. The parameters of the ion beam were taken from report (Bombardelli et al., 15°

2011). Figures 2 and 3 show the dependences of the ion torque and force on the 

angle , which were obtained for body and ion beam with the above parameters.�

At the initial moment of time, space debris center of mass has the following 

motion parameters: , , . These values 0 6671000mBr = 0 0Br =� 3
0 1.1587 10 rad/sf 	= &�

correspond to , . Let us take  , 31.1587 10 rad/sn 	= & 0e = 0.0005rad/sb
x� =

, , for which according (15) and (30) , 0.02rad/sb
y� = 0.03rad/sb

z� = 0.0803G =

and .0.0825R =
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Let us find stationary values. Numerical solution of equation (43) gives the 

following roots: , , , , . *1 0� = *2 1.9324rad� = *3� (= *4 4.3508rad� = *5 2� (=

Modeling shows that roots with odd indices correspond to unstable equilibrium, 

and roots with even indices are stable equilibrium. Let us choose the second root as 

a stationary position to which we will stabilize the oscillations: . Equations * *2� �=

(41) and (42) give the following results for this value: , 2
* 2.0668 10G 	= 	 &

. * 1.5451rad� =

Fig. 2. Dependence of ion beam torque  on angle I maxL �

Fig. 3. Dependence of ion beam force projections ,  on angle b
ixF b

iyF �

Let at the initial moment of time , , . Let 0 2.2rad� = 0 1.7rad� = 0.0803G =

us simulate the motion of the system using the control law (45) . The minimization 

of the cost function (47) using FMINSEARCH function in Matlab gives the 
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following values of the control law parameters: , , 16.7469k� = 8.3178k% =

, . Figures 4-6 show the graphs obtained in the case of 12.3538Gk = 43.9145k� =

uncontrolled motion and when using the proposed control law. 

Fig. 4. Dependence of  angle  on angle .� f

Fig. 5. Dependence of angle  on angle .� f

Fig. 6. Dependence of   on angle .G f
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The dependence of the dimensionless function of the control law  on the u

angle  is shown in Figure 7. The figure shows that at the initial stage, the control f

has a close to relay character, but as the system parameters approach the stationary 

position, the control takes the form of a nonlinear function bounded from above 

(when ). At u=1 and u=0, the control remains continuous, but not 66.14radf >

smooth.

Fig. 7. Dependence of control function (45)  on angle .f

Analysis of the graphs of controlled motion allows to hypothesize that the 

found stationary position , ,  is asymptotically stable. For a strictly *� *G *�

mathematical proof of this hypothesis, a rougher study using the Lyapunov’s 

theory is required. Since the control (45) is a continuous piecewise non-smooth 

function, the derivative of which is not defined at the switching points, the direct 

use of classical Lyapunov’s theorems is impossible, and the use of the theory of 

differential inclusions is required (Leine and Nijmeijer, 2013). This issue will be 

the topic of our future research. Here we will focus on the numerical analysis of 

the mechanical system behavior. A series of numerical calculations with different 

initial conditions was carried out to determine the region of attraction of this 

equilibrium. It is difficult to visualize the surface that bounds the region of 

attraction in four-dimensional space ( , , , ) . Figures 8 and 9 show two � � �� G

cross sections. Figure 8 was built for constant values , , and Figure 9 0 0� � = 0 *G G=



19

was built for , . The gray points in Figures 8 and 9 correspond to the 0 *� �= 0 *� �=

initial conditions for which the phase trajectory passes into the vicinity of the 

stationary position at an interval of 500 rad. 

According to the data given in the study (Šilha et al., 2018), the angular 

velocities of the rocket stages can reach values of 409.6 deg/s. Using equations 

(16), it can be shown that the modulus of angular velocity inside the region of 

attraction, which is shown in Figure 9, does not exceed 0.0034 rad/s. Thus, the 

proposed control can be used to stabilize slowly rotating objects.

Fig. 8. The region of attraction of stationary position in ( , ) space .� �

Fig. 9. The region of attraction of stationary position in ( , ) space.G ��

Calculations show that the proposed control law can be used for weakly 

elliptical orbits. Figure 10 shows the dependence of angle  on angle  for � f

various values of the eccentricity. Figures 11 and 12 show the change in angle �

and dimensionless variable  respectively.G



20

Fig. 10. Dependence of  angle  on angle  for various eccentricities.� f

Fig. 11. Dependence of angle  on angle  for various eccentricities.� f

Fig. 12. Dependence of   on angle  for various eccentricities.G f

It can be seen that at the eccentricity value of 0.04, the control law copes with the 

task, and the variables approach the stationary values. With an eccentricity value of 

0.05, the control is ineffective and rather leads to a buildup of the system. This is 
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due to the narrowing of the region of attraction of an asymptotically stable 

equilibrium position as a result of an increase in perturbations associated with a 

change in the gravitational moment in an elliptical orbit. Moreover, the equilibrium 

position itself is impossible in an elliptical orbit. Instead of a position of 

equilibrium, the phase trajectories are attracted to a stable limit cycle, which is 

closed trajectory in phase space. Limit cycle projections on planes for various 

eccentricities are shown in Figures 13 and 14. To obtain these graphs, the 

numerical integration of the equations of motion (31)-(35) over a large interval 

( ) was performed, and then the last period was plotted.[0,2500] radf �

Fig. 13. Stable limit cycles for various eccentricities in ( , ) space.� ��

Fig. 14. Stable limit cycles for various eccentricities in ( , ) space.� G

Calculations have shown that in the case of nonzero eccentricity the control 

parameters , , , , which provide a minimum to cost function (47), k� k%
k� Gk
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change, but insignificantly. This refinement does not lead to a qualitative change in 

the observed behavior, but requires significant computational costs. Therefore, for 

the purpose of optimization, it was decided to carry out calculations with the 

values of the control coefficients obtained for a circular orbit. When preparing real 

missions, more accurate and resource-intensive calculations, without this 

simplification, must be performed.

Conclusion

The paper considers the contactless transportation of space debris by means 

of an ion beam generated by the electrodynamic engine of an active spacecraft. A 

mathematical model describing the motion of a mechanical system consisting of an 

active spacecraft, which is considered as a material point, and a dynamically 

symmetric object of space debris in the shape of a cylinder, was built. Quantities 

proportional to the generalized momentum corresponding to rotation and 

precession angles in the classical Lagrange case of rigid body motion, which are 

named R-G variables here,  were used as system variables instead of angular 

velocities. A simplified mathematical model describing space debris attitude 

motion in the case when its center of mass moves in a Keplerian orbit. Stationary 

solutions for the case of motion in a circular orbit were found. A feedback control 

law that stabilizes the angular oscillations of a space debris object in a stationary 

position was proposed. Numerical simulation has shown that the proposed law can 

be used in orbits with small eccentricities when the object rotates at a low angular 

velocity. This work is the first attempt to study the controlled spatial motion of 

space debris within the framework of the ion beam shepherd concept. The results 

of the work can be used in the development of space debris removal missions.
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Appendix

The rotation matrices that were used to derive the equations of motion are 

given here. Transformation from planetocentric frame  to orbital frame p p pOX Y Z

 can be performed by two rotations: the positive rotation around the axis o o oBX Y Z

 on the angle , and the negative rotation around the axis  on the angle pOY f oOX

. These rotations are given by matrices  and , respectivelyv 1pM 1oM

, ,1

c 0 s
0 1 0
s 0 c

f f

p

f f

� �	
� �= � �
� �� �

M 1

1 0 0
0 c s
0 s c

o 
 



 


� �
� �= 	� �
� �� �

M

where , . The rotation matrix  can be defined ascosc� �= sins� �= opM

,1 1

c 0 s
s s c c s

s c s c c

f f

op o p f f

f f


 
 



 
 


� �	
� �= = 	 	� �
� �� �

M M M

The inverse transition can be made using the matrix . 1 T
po op op

	= =M M M

The transition from the orbital to the body coordinate system can be 

accomplished in three Euler rotations x-z-x. The first rotation around the axis  oBX

on the angle  is transfers the axes  to the axes . It is defined by � o o oBX Y Z 2 2oBX Y Z

the matrix . The second rotation around the axis  on the angle  is 2oM 2BZ �

transfers the axes  to the axes . It is defined by the matrix . 2 2oBX Y Z 3 2bBX Y Z 32M

The third rotation around the axis  on the angle  is transfers the axes bBX �

 to the axes . It is defined by the matrix . The rotation 3 2bBX Y Z b b bBX Y Z 3bM

matrixes are

, , .2

1 0 0
0 c s
0 s c

o � �

� �

� �
� �= � �
� �	� �

M 32

0
c 0

0 0 1

c s
s
� �

� �

� �
� �= 	� �
� �� �

M 3

1 0 0
0 c s
0 s c

b � �

� �

� �
� �= � �
� �	� �

M

Transformation from orbital to body frame can be defined by rotation matrix
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.c s
s

bo

c s c s s
c c c s s c c s s c

s s c c c s s c s c c

� � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� �
� �= 	 	 +� �
� �	 	 	 +� �

M

The inverse transition can be made using the matrix . 1 T
ob bo bo

	= =M M M
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Highlights:

- Simplified mathematical model describing 3D motion of dynamically symmetric space 

debris relative its center of mass in Keplerian orbit under the influence of the ion beam.

- Equation of stationary motion of space debris in a circular orbit under the action of an 

ion beam. 

- A feedback control law that stabilizes the 3D angular oscillations of a space debris 

object in a stationary position.
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