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The use of ion flow for the implementation of contactless force action transmission from an active spacecraft to a
passive object is a promising technology for the creation of active large space debris removal systems. Keeping a
certain orientation of large space debris with respect to the oncoming ion stream in the process of its removal from the
orbit can significantly reduce the time for this transport operation. The aim of the work is to develop a control law that
stabilizes the space debris in a certain position. A cylindrical spent rocket stage is considered as the space debris. The
planar motion of a mechanical system consisting of the active spacecraft and the space debris is considered. The two
ways to control the ion flux are considered and compared with each other: by changing the thrust of the ion engine and
by turning the ion flow direction. Lyapunov’s theorems on stability and asymptotic stability in the first approximation
and Bellman method are used to build the control laws. The results of numerical simulation prove that controlling the
ion flow direction is a more efficient way of stabilizing attitude motion in terms of minimizing the time spent.

Nomenclature v = true anomaly angle, rad
b; = Fourier coefficients of ion beam torque expansion, w = dlmer%swnless control function
N.-m X = coordinate of the center of mass, m
¢ = coefficients of the ion beam torque decomposition, y = coordinate Of d,le center Of,mass’ m-
N-m a = angle of deviation of the line connecting the space-
d = distance between the spacecraft and the space debris craft and the.center of mass of the space debris from
center of mass. m the local horizon of the spacecraft, rad
F.,F, = projections of the ion beam force on the axes of the %o = f:hvergence gngle of Fhe ion beam, rad
. p = ion flow axis deflection angle, rad
body coordinate system, N . T .
1 = longitudinal moment of inertia of the space debris, 4 = deflection angle of the longitudinal axis of space
* kg - m? debris from its local vertical, rad
1,1, = transversal moments of inertia of the space debris, & = small Value, .
o kg - m? (4 = space debris deflection angle, rad
k = constant control parameter U = gravitational constant of the Earth, m? - s72
L = Lagrange function, J T = dimensionless independent variable
Lmax = maximum ion beam torque vector that the ion engine @® = spacecraft orbital angular velocity, rad/s
can provide, N - m )
L, = ion beam torque, N - m Subscripts
Mma,my = mass, kg A = spacecraft
Mo = ion mass, kg B = space debris center of mass
ng = plasma density at the beginning of the far region, m™> = P
P, P, = spacecraftcontrol engine’s thrust force projections, N
0; = nonpotential generalized forces . L. Introduction
q; = component of the generalized coordinates vector L .
R, = radius of the beam at the beginning of the far region, m PACE debris mitigation is one of the most important challenges

of modern astronautics. The risk of mutual collisions of
nonfunctioning satellites and spent rocket stages in orbit makes it an

r = distance between the center of the Earth and the
spacecraft, m

S; = area of jth triangle, m? grge.rllt (;ask to.searcfh f(?r means of actlvedslljja.ce debris lremoﬁiaé. A
T = Kinetic energy, J etailed overview of existing active space debris removal methods is
U = potential energy, J given in [1-3]. Contactless methods of cleaning space debris are of
u —  dimensionless c;)ntrol parameter great interest. The main advantage of contactless transporjation ofa
1% = Lyapunov function passive space object is the absence of the need to dock with it. Several
V., Vs = velocity, m/s possible methods of contactless influence on the passive object are
Vo = axial component of the ion flus velocity, m/s discussed in the scientific literature: using space-based lasers [4—6],

using an electrostatic field [7-9], and using an ion flux created by the
ion engine of an active spacecraft [10-13]. Contactless transportation
due to electrostatic forces requires the placement of sophisticated
equipment on the active spacecraft for the transfer of charge on the I

v = maximum axial component of the ion flux that the ion
engine can provide, m/s
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In this study, we will focus on the ion beam transportation method.
It is assumed that an active spacecraft approaches space debris and
directs an ion beam at it. Ions colliding with the surface of space
debris exert a force on it. To keep the active spacecraft near the space
debris, the spacecraft includes a second ion engine, which is directed
opposite to the first one and neutralizes its force effect. This scheme
of contactless transportation is called “ion-beam shepherd.” An
analysis of the literature shows that the question of determining the
forces and moments transmitted by the ion flow to a blown rigid
body is studied in detail [14-16]. Estimates of the time it takes for
space debris to be removed from the spacecraft are given in various
papers [10,11]. Space debris with a mass of several tons can be
removed from a 1000 km orbit for several months. Simulation of the
motion of the ion-flowed spent rocket stage around its center of mass,
taking into account gravitational, ionic, and aerodynamic moments,
is carried out in [17]. The control laws of an active spacecraft are
proposed in studies [18-20] without taking into account the rotation
of space debris with respect to its center of mass. In [11], it was shown
that the attitude motion of space debris significantly affects the time
required to change orbits. In particular, the upper stage of the Cosmos
3Mrocket stage descent from a height of 500 km to 100 km in the case
of free oscillations for about 180 days. In the case of the rocket stage
stabilization perpendicular to the ion flow this time decreases to
120 days. The spatial orientation of the body relative to the oncoming
ion flux, which ensures the fastest removal of the body from the orbit
and depends on the mass-geometric parameters of the body, can be
found. Thus, the task of stabilizing space debris in some position
arises. The task of detumbling and stabilization of a passive object
also arises when the docking or capturing of the object with an active
spacecraft is required, for example, for its service maintenance or
tethered towing.

The aim of the work is to develop a control law that ensures the
stabilization of a passive object in a certain position. The stabilization
process can be divided into two stages. The first stage is the reduction
of the angular velocity of the passive object rotation, and its
translation into oscillation mode. The second stage is a decrease in
the oscillation amplitude of the passive object. The analysis of the
phase portrait performed in [11] shows that a decrease in the angular
velocity can be performed by deflecting the axis of the ion beam in the
direction coinciding with the direction of the passive objective
rotation. Two ways to control the ion flux at the second stage of
stabilization are considered and compared with each other: by
changing the thrust of the ion engine and by turning the ion flow
direction. For the first way it is supposed that the orientation system of
the active spacecraft holds a constant deviation angle of the ion flux
axis from the line connecting the centers of mass of the active
spacecraft and the passive object. For the study, a mathematical model
is developed that describes the motion of the system in the orbit plane
and takes into account both the relative position of the passive object
and the active spacecraft and the orientation of the object relative to
the ion flux. Lyapunov’s theorems on stability and asymptotic
stability in the first approximation and Hamilton—Jacobi-Bellman
equation [21] are used to build the control laws.

The self-similar model of ion engine plume expansion and fully
diffused reflection model of ions interaction with the object’s surface
are used to calculate the effect of ion flow on the object [22,23]. It is
assumed that the ion flow does not interact with the atmosphere and
ionosphere plasma of the Earth. In addition, the influence of the
atmosphere on the attitude motion of the passive object is neglected.

An ideal case of planar motion, which is a particular case of spatial
motion, is considered in this paper. There are currently no studies on
ion beam control aimed at detumbling and attitude stabilization of
space debris. Spatial three-dimensional motion is described by
complex mathematical models, the use of which is very difficult to
identify the fundamental features of the considered mechanical
system behavior. Consideration of the plane case allows one to grope
the approaches to motion control, which can then be attempted to be
.transferred to amore complex three-dimensional case. Because plane
motion is a special case of the three-dimensional, its analysis allows
us to discard nonworking ideas without resorting to cumbersome
calculations. Investigation of in-plane motion as the first step in

studying the dynamics of a mechanical system has proven itself, for
example, in the analysis of uncontrolled descent of reentry vehicles in
the atmosphere [24].

Because the problem is considered in plane statement, restrictions
on the shape of a passive object are imposed. It should have a plane of
symmetry, which should lie in the plane of the orbital flight, and the
center of mass of the passive object should be in the plane of
symmetry. In the opposite case, the ion beam will create a moment
tending to deflect the object out of the orbital plane. As a passive
object, a cylindrical spent rocket stage is considered here.

This paper consists of six sections. Section II is devoted to the
development of a mathematical model. Section III proposes the
control law of the engine thrust and proves its asymptotic stability.
Section IV builds control using the changing ion flow direction.
Results of numerical simulations and comparison of control laws are
given in Sec. V. Conclusions are presented in Sec. VI.

II. Mathematical Model

A. General Equations of Motion of a Mechanical System

The motion of a mechanical system consisting of space debris and
an active spacecraft—*shepherd,” which is equipped with two ion
thrusters—is considered. It is assumed that the motion occurs in the
orbital plane under the action of gravitational forces and the thrust
force of the ion thrusters, and the force resulting from the ion beam
impinging on the debris. The space debris is considered as a rigid
body with a center of mass at point B, and the spacecraft is the material
point A (Fig. 1). The system position can be described using five
generalized coordinates: the true anomaly angle v, the distance
between the center of the Earth and the spacecraft r, distance between
the spacecraft and the space debris center of mass d, angle of deviation
of the line connecting the spacecraft and the center of mass of the
space debris from the local horizon of the spacecraft a, and the space
debris deflection angle 8. The direction of the axis of the ion flow
created by the engine of the spacecraft can be defined by the angle j.

Before proceeding to the construction of the equations of motion,
several coordinate systems should be introduced (Fig. 1): the inertial
coordinate system Ox,y ,, orbital coordinate system Axy, body frame
Bx,y,,, and ion-beam-related coordinate system Ax,y,. Origin O is
the center of the Earth. The axis Ox), passes through the pericenter of
initial space debris orbit. The origin of the orbital frame Axy is located
at the center of mass of the spacecraft. The axis Ax lies along the
radius vector of the spacecraft. The axis Ay is directed toward the
orbital flight. The body frame Bx,y, is fixed relative to the space
debris. The active spacecraft is a material point A. The axis Ax, is
directed along the ion beam axis to the flight direction, and the axis
Ay, completes the right-handed set.

To obtain the equations of the considered mechanical system
motion, the second-kind Lagrange equations can be used:

S— ==, )

. x/
AY» Debris

Fig.1 Mechanical system.
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where L = T — U is the Lagrangian, T is the kinetic energy, U is the

potential energy, Q; is the nonpotential generalized forces, and g is a

component of the generalized coordinates vector ¢ = [r, v, d, a, 0].

The kinetic energy of the system is the sum of the kinetic energy of the
space debris and energy of the spacecraft:

p_ VA vy L¢P

2 2 2

@

where m, is the mass of the spacecraft; my is the mass of the space
debris; V4, = i? + r21? is the velocity of the spacecraft; V is the
velocity of the space debris, which will be written below; I, is the
transversal moment of inertia of the space debris;andp = v+ a + 6
is the angle of deviation of the longitudinal axis of space debris Bx;,,
from the axis Ox,, of the inertial coordinate system (Fig. 1). The
potential energy of the system is the sum of the potential energy of the
material point A and a rigid body with a center of mass at the point B
in the central gravitational field of the Earth.

U= _ﬂmA _.umB _/’l(Ix + Iy + Iz)
r rp 2r3

N 3u(l,cos?y + I,sin’y + 1)
Zr%

3

where p is the gravitational constant of the Earth, rz = OB is
the distance from the center of the Earth to the center of mass of
the space debris, /, is the longitudinal moment of inertia of the
space debris, I, is the transversal moments of inertia of the space
debris, y = 0 + a —n is the deflection angle of the longitudinal
axis of space debris Bx; from its local vertical OB (Fig. 2), and
n = arctan(BE/OE) = arctan(d cos a/r — dsina). Since d < r,
angle ; can be expanded into series 5 ~ (d/r) cos a + O((d/r))?,
and it can be roughly assumed that y ~ 6 + a.

To determine the distance rg and velocity V p, the coordinates of
point B in the inertial coordinate system should be written

xp =rcosv—dsin(a+v), yg=rsinv+dcos(a+v) (4)

The distance rp can be written in the form

rg = /x5 +y3 = Vr* —2drsina + d? 5)

After calculating the derivative of the coordinates (4) the square of
the velocity Vp can be found as

V3 =i} +y3 =2 +d* +da® + 2d2av+02 (2 + d°)
+2cosa(drv — dirv—dar) —2sina(drav +dri* +d 7).  (6)

During the motion, nonpotential forces act on the mechanical
system: spacecraft control engine’s thrust force projections P, and
P; the ion beam force arising from the ion flow blowing the space
debris, and presented in the form of two projections on the axes of the
body coordinate system F, and F; and the torque L, from the ion
beam. Taking into account these forces and torque, the generalized
nonpotential forces can be written as
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Fig.2 Determination of angles.

Q, = P, + F,cos(a+ 0) — Fysin(a + 0) @)

Q, = Py + F(rsin(a + 0) — dcos 0)

+ Fy(rcos(a +6) +dsinf) + L, ®)
Qy = F,sinf + F, cos 6 &)

Qq = d(F,sinf — F,cos6) + L, (10)
Qy=1L, an

Substitution of Egs. (2) and (3) into Eq. (1) taking into account
Eqgs. (4-11) and some simplifications gives

Py

nmy

F= b+ (12)

2rv Py, 3u(,—1,)sin(2(a + 0
_2v Py 3 })2 (3( ) (13)
2r mury

i} =
r rmy

3y~ 1)sin@a+6) _,

L(b+a+0)+ 2 2

usina
r2 my
. F,sin@ + F, cos 6 +,u(rsina— d)

mpg r%

3u(l, — 1,)(sin(3a + 260) + sin(a + 26))
drymar

P,sina— P,cosa

d= + dé? + 2da v +dv?

3 ur

e (I, — 1,)(sin(3a + 26)

—sin(a + 260)) + 2(I, + 1, + 4l,) sina)
. 3u(Bd(I, — 1) cosQa + 20) + d(I, + 1, + 41,))

5
4mpry

15)

usina 270 2d(a+v) F,sind—F cosd
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r r d dmpg
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ryd dryrdmy
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8rydmy

a=

dmy rmy

(16)

Equations (12) and (13) describe the motion of a spacecraft.
Equation (14) describes the motion of space debris relative to its
center of mass. Equations (15) and (16) describe the motion of the
center of mass of the space debris.

B. Calculation of the Ion Beam Forces and Torque

For calculation ion beam forces F', and F', and torque L, the self-
similar model of ion engine plume expansion and fully diffused
reflection model of ions interaction with the surface can be used. The
self-similar model assumes that all streamlines expand similarly and
the ion flow expansion can be described through a dimensionless
self-similarity function, which determines the concentration of ions
in the ion beam. A detailed description of this model can be found in
[22,23]. The surface of the space debris can be divided into triangles,
and the force acting on each jth triangle can be calculated. The self-
similar model allows calculating the density of ions near the surface
of each triangle.
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F. =

monoR3S V3 (3(y3j+z§j)
=3 eXp\ 7

ey;-N))e,, = V2F,
x2tan’a )( vi- Njev; = VoF;

an

2 2
Xy jtan a

where my, is the ion mass; n is the plasma density at the beginning
of the far region; R, is the radius of the beam at the beginning
of the far region; a, is the divergence angle of the ion beam;
ev; = [=1,=yaux;} —24j%,}]" is the vector directed along the
velocity of the ion flux at the barycenter P; of jth triangle, given by its
coordinates in the Ax,y,z, frame (Fig. 1); V, is the axial component
of the ion flux velocity; the radius vector of the barycenter point P; in
the Ax,y,z, frame has coordinates p; = [~x,;, V4j» Za j]T; S is the
area of jth triangle; and F ; is the ion beam force divided by square
axial component of the ion flux velocity. Then the summation is
performed, and the resultant force and moment acting on the whole
body are calculated.

F=YF;=Viy F; L=7 p;xF;=V}y p;xF; (18)

jeJ jeJ jeJ jeJ

where J is an index set including the subset of triangles inside the ion
beam. The ion force and moment depend on many parameters, in
particular, on the distance d, angles 0 and f, and the location of the
center of mass inside the body. The force transmitted by the ion beam
is proportional to the square of the ion flux velocity V, which can be
controlled over a wide range by the voltage inside the ion engine.
Denote by V§** is the maximum axial component of the ion flux that
the ion engine can provide. If the engine does not operate at full
capacity, then it creates a flow of ions at a speed of Vy = J/uV™,
where u is a weighting factor, which characterizes the power of the
engine, and can vary in the range from O to 1. Then ion beam torque of
the engine that is not operating at full power can be represented as

L = uL™> (19)

_ 2 =
where L™ = (V§¥*)*3 . ,p; X F;.
If the ion beam force F is calculated, then the ion beam torque
relative to the space debris center of mass L can be written as

L=r,xF (20)

where r, is the vector connecting the center of mass with the point of
the ion beam resulting force application. Vector r), is not constant. It
depends on the ion flow parameters and the orientation of the space
debris. An analogy with aerodynamic moments can be made here,
because the aerodynamic force is applied not in the center of mass of a
body, but in the center of pressure.

C. Case of the System Motion in a Circular Orbit

Two types of control will be discussed below: changing the speed
of the ion flux and changing the angle of deflection of the axis of the
ion flow. A particular case when motion occurs in a circular orbit is

considered.
V== ur 1)

The relative position of space debris is held constant by the control
system of the spacecraft. In this case

r = const,

a=0, a=0, d = const 22)

After the transition to a new independent variable, 7 = /2Q1, and
taking into account Eq. (19), the equation of the space debris attitude
motion (14) can be written in the form

u(0,0")Lm

23
2071, @3)

1
0" 4+ —sin20 =
+2sm

where Q2 = Bu, — 1,)/2°3 1] >0, u(9,0’)=1[0,1] is the
dimensionless control parameter, L?** is the ion beam torque
created by the included at full power ion engine, and the prime means
the derivative with respect to the variable z. From a physical point of
view, the control parameter u(6, ") is proportional to the square rate
of discharge of ions and is determined by the voltage in the ion engine
u = (Vy/V3ax)2, Because the ion engine cannot inhale the ions
inward, this control parameter is positive. After expansion of the ion
beam torque into the Fourier series

LI™(0) = ag + Y _(a;jcos jO + b;sin jo) (24)
j=1

the equation describing the motion of space debris relative to its

center of mass can be obtained in the form

1 u(®.0")
0" + ~sin20 =
tasm 2071,

(ao + Z(aj cos jé + b; sinj@)) (25)
=

where a; and b; are the Fourier coefficients. This equation will be
used in the following section to find control laws that stabilize the
space debris attitude motion in the position 8 = 0.

III. Space Debris Attitude Control by Changing the
Thrust of the Ion Engine
A. Thrust Control on a Circular Orbit

The case when the orientation system of the active spacecraft holds
a constant deviation angle of the ion beam axis from the line
connecting the centers of mass of the active spacecraft and the space
debris # = const all the time is considered. Function L"** () view is
greatly influenced by the space debris center of mass position and the
deviation angle .

Consider a situation of uncontrolled motion, when the engine is
turned on at full power (u = 1). In the particular case when the space
debris center of mass lies in the plane of symmetry (Fig. 3 dash dotted
line), its torque L™ is an odd function of the angle 8 for g = 0.
Figures in this subsection is plotted for cylindrical space debris,
whose length is / = 6.5 m, radius is 1.2 m, and the center of mass is
shifted 0.2 m to the bottom. Equation (23) has an equilibrium position
6=0, 8 =0, since L™ (0) =0. For this case, the following
expressions for the Fourier series coefficients (24) can be written:
a; = 0. In the general case, when the center of mass does not lie in the
symmetry plane, the value € = 0 is not the root of the function
LT(0) for # = 0 (Fig. 3 dotted line), and & = 0, " = 0 is not the
equilibrium position of Eq. (23). Changing the angle $ leads to a
change in the graph of the function L"**(6). A series of calculations
showed that, for a cylindrical body, the value f = p* can be found
such that L (0) =0 (Fig. 3 solid line). In this case 6 =0 is
equilibrium position of Eq. (23), and the following relation can be
written for the coefficients of the Fourier series (24): Zj’;o a; =0.
The next subsection (Sec. B) is devoted to the construction of control
law for stabilizing oscillations in the position 8 = 0 for this general
case when f = f*.

0.2 T T T T T T T ] remmmmmmimimmmn
=0
0.015 T = i)
0.01 a 77\
. )% ‘”\ =0 /) ‘\ ____________________
£ 0.005— N
Z o4 _l 3 %’ B=0
F7 =B’ 7 gl G S G-
i = ; E
0.005 \ v \ /4 N —
-0.01 / 7 < o
R Y/ B=p
0.015 N = \ / ‘% 2omcmmE -
-0.02
-n -3n/4 -nw/2 -n/4 0 w4 w2 3n/4 n
0, rad

Fig. 3 Dependence of the ion beam torque on the angle of the space
debris deflection 6 for various positions of the center of mass and the
angles of the ion beam axis deviation f.
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Fig. 4 Dependence of the ion beam torque on the angle of the space
debris deflection @ for various angles of the ion beam axis deviation .

Cases when the ion beam axis is deflected by an angle £« O S
providing a maximum or minimum of ion beam torque at the point
6 = 0, should be also considered (Fig. 4), because a larger modulus
of torque allows to expect faster stabilization, wherein the control law
u(6, 6’) should be selected so that @ = 0, 8’ = 0 is the equilibrium
position of Eq. (23). This case is considered in Sec. C.

Ion engine thrust control for two cases will be considered below. In
the firstcase (8 = f*), the function LT**(0) becomes zero at the point
6 = 0, and the function changes sign when passing through this
point. In the second case (f = P, OF f = Pmax), function LI**(60)
does not equal to zero at the point @ = 0 and its neighborhood. The
laws of the ion engine thrust control that are being developed are
based on the idea that the torque created by the engine should be
directed against the angular velocity of rotation of the space debris.

B. Thrust Control for the Case when L7**(0) = 0 (8 = §*)
It is proposed to use the control in the form

0, when 06’ > 0 (26)

- { —2kQ21,00’, when 60’ <0,
where k is the constant control parameter, which is chosen from the
condition u < 1. To maximize control impact, the control parameter
should be chosen as

1

k= 2021, max(|00’)) @7

Because the amplitude of the angle oscillations and its angular
velocity decrease as the equilibrium position is approached, it is
advisable to periodically recalculate this coefficient. For example, at
the moment when @ = 0 and 6’ > 0 the coefficient k could be
recalculated on the basis of data for the previous period of the angle
oscillation.

Consider the mechanism of operation of the control law
u = —2kQ?I,00’ in the absence of the constraint # > 0. Consider the
ion beam torque L of a full-powered engine acting on the space
debris. The period of its oscillations can be divided into four zones
(Fig. 5). The dashed line shows oscillations without control, when
u=1 and L, = L™ The solid line demonstrates controlled
motion. At zones I and III, the direction of the torque L** coincides
with the direction of the space debris rotation (Fig. 6). This torque
tends to increase the angular velocity of rotation. To slow down the
rotation of the space debris, the direction of the torque must be

Zonel Zonell Zonelll ZonelV

0 u<0 u>0 | u<0 u>0
.--~\\\\\ /,//——\\\\.
\\ 7 - T
\\\\ ///
\ /,’
u=u(0,0’ < ’F/l/’
00">0 | 66'<0 | 66">0 00’<0

Fig. 5 Space debris oscillation.

L ;na.\' N

Zone I1L, IV Zone I, 1T

Fig. 6 Ion beam torque.

changed to the opposite. Therefore, the control parameter # must
be negative. In this case sign(L,) = —sign(L™*). At zones II
and IV, the direction of the space debris rotation and the ion beam
torque LT* do not coincide. In this case, the torque slows down the
rotation, and the control coefficient u should be positive. In this case
sign(L,) = sign(LT™). Thus, the idea is that the control parameter «
is chosen so that the product u(6, 8') LT has a sign opposite to the
angular velocity 6’. Figure 7 demonstrates schematically the position
and direction of the space debris rotation. In a real situation, when
control # < 0is not physically feasible, the ion engine is turned off (in
zones I and III), in order to not accelerate the rotation of the space
debris.

Two cases will be considered separately, when control u = —2kQ
21,06’ is implemented and when u = 0. We first reject the constraint
u > 0 and show that the control u = —2kQ?1,00’ can provide the
asymptotic stability of the equilibrium position 8 = 0, 8’ = 0. To
study the stability, we use the first approximation approach [25]. It is
assumed that @ and 0’ are small values of the € order. The expansion in
Eq. (19) of trigonometric functions in series gives

2 2
9”+9—§m+ﬂ§m+-~=-wa@w+q9+qm

+ 30 + i+ 50+ )

Transferring the nonlinear terms in the right side of the equation
gives

0" + 0 = —k00'(cy + ¢10 + c,6* + c36°)
2 2 (28)

793 _ 705 0] 6

+ 3 5 + 0(€°)
where ¢ =3 _ga; =0, ¢, =3"_jb;, ca=-(1/2)3_,
()*aj, and c3 = —(4/3) 3 1_, (j/2)’b; are the coefficients of the
ion beam torque decomposition. In the case L,(0) =0, the
coefficient ¢y = 0. Equation (28) can be written in the matrix form

Zone 11

Fig. 7 Ion beam torque L in different phases of the oscillation period.
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x' = Ax + g(x) (29)

1 0

g = [g1. )" is the nonlinear terms vector, g =2 0 g;-k), ggj) is

the function that contains the variables of kth order,
ggz) = g(22) = g(zs) = 0,and g§3) = —kc,x,x3 — (2/3)x3. The matrix
A has two purely imaginary eigenvalues =+i. This is the simplest
critical case described in section 29.b of the book [25]. The
conclusion about the stability of the equilibrium position cannot be
made on the basis of the analysis of the linear system x’ = Ax. For
stability analysis, it is necessary to take into account the contribution
of nonlinear expansion terms. Following the methodology given in
[25], the Lyapunov function for the equation containing terms of
order &3 will be searched in the form

where x = [x;, x,]" is the vector, x;, = 0',x, = 0, A = |:0 -1 ],

1 2
V=xi+x+ gx‘f + gx%x% +ax0d -G (30

where y, = —(kc, /4). The total derivative V for Eq. (29) is
V=707 +x3)° + O(¢) 3D

Taking into account the smallness of the values of x;, it can be
concluded that the Lyapunov function V given by Eq. (30) is positive
definite (Fig. 8) at small values x; and x,, and its derivative V given by
Eq. (31) is positive definite when y4 > 0, and negative definite when
74 <0 (Fig. 9). In other words the equilibrium is asymptotically
stable in the case where y4 < 0, and unstable in the case y4 > 0. Thus,
the condition for the asymptotic stability of the equilibrium state can
be written as

key >0 (32)

Consider now the case when # = 0. The Lyapunov function for
Eq. (25) in this case can be written in the form

V =0+ (2 —cos*6) (33)

The derivative of function (33), taking into account Eq. (25) with
u = 0, is identically zero.

V=0

According to the Lyapunov stability theorem, the equilibrium state
0 =0,0" = 0is stable.

The use of control (26) allows transferring the phase trajectory to a
neighborhood of the equilibrium position § = 0, 8’ = 0. When

0.2

02 0
0.2
X, 02 04 04 2

Fig. 8 Lyapunov function (30) for y, = —0.2.

o]

T .02
X, 02 04 04 X2

Fig.9 Lyapunov function derivative (31) for y, = —0.2.

60’ < 0, the trajectory approaches the equilibrium position due to its
asymptotic stability, and when 69’ > 0, the trajectory does not move
away from the equilibrium position due to its stability. Thus, control
(26) consistently approximates the phase trajectory to the equilibrium
position.

C. Thrust Control for the Case when L}'**(0) # 0 (8 = f,in Or
ﬁ = ﬁmax)

Consider the case when the ion flux torque does not become zero in
the vicinity of the point @ = 0. The following control law is proposed:

u(@’) = —2kQ%1,0’ (34)

where sign(k) = sign(L*(0)). Because in the considered case the
function LT does not change its sign, the torque when using the
control (34) is always directed opposite to the direction of rotation
and slows it down. In this case, the equation of motion takes the form

] n
0" + 3sin20 = —ka’(ao +

(ajcos jO+ b, sinj@)) (35)
j=1

To prove that the equilibrium position =0, 6 =0

is asymptotically stable, we use the first approximation approach.
After expanding Eq. (35) in a series in the point & = 0, the result

can be written in matrix form (29), where A = [_]ico _01 ],
g:[—ke/(619+6262+c393+...)_’_%93_%95] ¢ =
0 )
Z;‘l:() a;. The eigenvalues of matrix A have the form
ke keg\2
Ao = —7% ( 2") -1 (36)

The equilibrium position § = 0, 8’ = 0 is asymptotically stable
regardless of nonlinear terms g(x) if the real parts of all eigenvalues
(36) are less than zero. This condition is satisfied if

kC() >0 (37)

Condition (37) is satisfied when the above ratio sign(k) =
sign(LT™(0)) = sign(cy) is true.

IV. Space Debris Attitude Control by Changing the
Direction of the Ion Flow

As mentioned above, the ion beam torque L,, depends on the angle
of deflection of the axis of ion beam (angle #in Fig. 1). In this section,
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the task of stabilizing space debris attitude motion in a circular orbit
by changing f is considered. The task of finding the time-optimal
control that transfers the system to the equilibrium position is posed
to determine control structure. The controlled motion equation can be
written as

1
0" + Esin 260 = w(0, p) (38)
where w(6, ) = [L,(0, #)/2Q%1,] is the control function. The cost

function is

I

J=/dt (39)

0

For Eq. (38) and cost function (39), the Hamilton—Jacobi—Bellman
equation can be written in the form [26]

or 00

00B(,0,0") [ 1 . B
+T —Esm29—|—w +1 =0 (40)

008 (2,6,0")  0pP(z, 0,6
min [cﬂ(f,,)Jrfp(n,)e,
WE[Wiin;Wnax |

where ¢?(, 0, 0’) is unknown value function.

Because all the trajectories must reach the point = 0, 8’ = 0 at
the moment 7 = t;, the boundary condition is defined only at this
point #(T, 6, 0’) = 0. In accordance with the Bellman method, the
structure of the optimal control can be found from the condition of the
minimum of the expression in brackets in Eq. (40):

29”(2,0,0") >0 (41)

B ’
Wpa When 220000 gg‘,g’e) <0;
w =
00’

Win, When

Equation (41) shows that optimal control is relay. An attempt to
solve Eq. (30) makes it necessary to calculate the integral

dx

0
B A —_——
vt = a/ v/2w(x = 0) + 4(cos(x/2) — cos(6/2)

+ F(=2wb + 0'> — 4cos(8/2))

which is impossible to do analytically. Therefore, we focus on
building simplified control.

Consider a relay control when the angle f changes instantly. This
assumption is fully justified, because the period of oscillations of
space debris without a control is about an hour and the engine axis can
be rotated in seconds. If the space debris is in fast rotation mode and
this assumption is not fulfilled, then it should be first transferred into
oscillation mode. To slow down the rotation angular velocity, it is
necessary to turn the axis of the ion beam to obtain the maximum
torque that will slow down the rotation [11]. After the angular velocity
decreases and the space debris goes into oscillation mode, relay
control (41) can be used to stabilize it. Figure 4 demonstrates
the dependence of the L on the angle of deviation of space debris 6
for various values of . The mass-geometric parameters of space
debris are given in Sec. II.A. An analysis of Fig. 10 shows that the
maximum values of the moment L, correspond to an angle
Pmax = —10°, and the minimum values correspond to an angle
Pmin = 9°. With a further increase in the angle modulus, the moments
decrease as part of the passive object goes beyond the flow.

Using the dependences of the moment L on the angle 6 shown in
Fig. 4, the phase portrait of Eq. (23) for f = fin. f = Pmax Was
constructed (Fig. 11). Solid lines show phase trajectories
corresponding to f = P, and dashed lines demonstrate phase
trajectories for the case f = f,.x. Analysis of phase portrait shows
that the transition to the equilibrium position 8 =0, 6’ =0 is
possible either by phase trajectory I or by trajectory II (Fig. 11). Thus,

0.08 /

0.04

WY
AR
ST TR
AT
R
A,
W
I
R
N

-0.04

N

-0.08
2

-10

B, deg 0 2n
T

0, rad

Fig. 10 Dependence of torque L, on angle 0 for various f.

20 /2

the transition to the equilibrium position can be divided into two
stages. First, it is required to transfer the phase point to the trajectory I
or II, and then the point moves along this trajectory to the equilibrium
position. Phase trajectories I and II divide the phase space into two
areas. In the white zone to go to trajectory II we need to use control
P = Pmax. and in the gray area we need to use control f = f;, to go
to trajectory I. For example, if we are at point A in Fig. 11, then we
need to rotate the ion beam axis by an angle f = f,,;,; when we are in
point B, we need to rotate the axis by angle f = f,,,.. This will allow
us to get to the point § = 0, 8’ = 0 along trajectory L It should be
noted that if at the initial moment of time the body oscillates at a
relatively small amplitude around the equilibrium position +7/2,
then it is required to turn off the engine and wait until the imaging
point leaves the vicinity of this equilibrium position.

The described control requires obtaining an analytical equation for
the phase trajectories I and II (Fig. 11). The solution of this problem
causes difficulties in connection with complex nature of the moment
L.. The authors propose to use an approximate equation of the
trajectory to determine the moment of control switching

0 =+— [— 42)

where Ly = L_(0) is the moment value corresponding to the
equilibrium position @ = 0. Taking into account Eq. (42), the
following control can be offered:

) Prin,  when 6> — ””L'zgz sign(6),
b= . Lot 43)
ﬁmaxs when 6 < — Lo s1gn(0 )

When using control (43), the switching moment does not coincide
with the optimal one; therefore, the transition to the equilibrium
position is performed in more than one switching. Figure 12 shows
schematically the phase trajectory and positions of space debris and
active spacecraft at several points. At points D and H, control is
switched. If we knew the analytical equation of the boundary, which

T p—

re =
A X W B=B.
/ 5 s
/
7 7 solid lines
/ ! =/

s “\/

N

0, rad
Fig. 11 Phase portrait.
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Table1 Fourier coefficients for various values of the ion flow axis deviation angle
p=p* =02036° P = Pnax = —10° P = Prin =9°

Jj aj,N~m bj,N-m aj,N~m bj,N~m aj,N~m bj,N~m

0 -1.10158-1073 0 0.0368453 0 —0.0370000 0

1 222337-1073  —1.37822-10™* 6.24380-103  5.95066-10*  6.01756- 107> —1.11596- 1073
2 -8.89402-107* 9.95015-1073 0.0242794 7.52650 - 1073 —0.0237260 7.71685 - 1073
3 —-7.20263-107* 1.85450-107*  1.54778-10™*  523968-107* —4.99732-10"* —1.57499.10*
4 2.83589-10"% —5.53070-103 -8.98374-10~3 —1.07517-1073 8.94706-10~° —1.79172-1073
5 4.03508-107* —1.52168-10"* -3.60726-10~* -5.47992-10~* 2.14785-10"*  5.89558.107*
6 -8.73372-107° 1.97856-1073  2.95004-10~* —1.71206-10"> -8.13403-10"* —1.32353.107°

is shown by a dashed line I, the transition from point A to the origin of
coordinates could be done in one switch (near point D).

V. Results of Numerical Simulations
A. Parameters of the Mechanical System

As an example, an attitude motion of a Cosmos 3M [27] rocket stage
in a circular orbit of 700 km altitude is considered. The stage has mass
m = 1400 kg, its length is / = 6.5 m, and its radius is 1.2 m. The
center of mass is shifted 0.2 m to the bottom of the rocket. The moments
of inertia are I, = 1300 kg - m? and /, = I, = 6800 kg - m>. In this
case Q = 1.221- 1073 rad/s The shepherd-spacecraft is held at a
constant distance, d = 15 m, from the stage. It creates ion beam with
the following parameters [28]: the mass of the particle (xenon) is
mg = 2.18 - 1072 kg, the plasma density is ny = 2.6 - 10'¢ m=3,
the radius of the beam at the beginning of the far region is 0.1 m, the
axial component of the ion flux velocity uy = 38000 m/s, and
the divergence angle of the beam is oy = 15°. Figure 10 shows the
dependence of the ion beam torque L,(6, ) that was obtained for
the body and the flow with the above parameters using the calculation
program developed by the authors [11]. Table 1 contains the values of
the Fourier coefficients for various values of the deviation angle of the
flow axis. Value * = 0.2036° corresponds to the case LI*(0) = 0,
value f = —10° corresponds to the maximum torque L. (), and value
B =9° corresponds to the minimum torque L_(@). Numerical
simulation of attitude motion stabilization will be considered in the
following section: when the space debris is in oscillation mode, and
when the space debris is in rotation mode.

B. Atmospheric Impact Assessment

Atlow orbits magnitude of the aerodynamic forces and torques can
be comparable with the values of the ion beam forces and torques.
The study of the influence of the atmosphere on the motion of a
Cosmos 3M rocket stage transported by an ion beam was carried out
in [17]. For comparison of the aerodynamic and ion torques, the

Fig. 12 Phase portrait.

graphs of the maximum values of the torques on the altitude are
shown in Fig. 13. The solid line shows the maximum aerodynamic
torque L, acting on the rocket stage on a circular orbit. The dotted
line corresponds to the moment of the ion beam L, = 0.0138 N - m.
The aerodynamic torque can be calculated as

Ly,

2
= %Sl max(Cy) (44)

where p(h) is the atmospheric density at altitude 4, S = 4.524 m?
is the rocket’s cross-sectional area, Cy 1is dimensionless
aerodynamic coefficients of pitch moment, max(Cy) = 4.1 [17],

Vs = i/ (R + h), and Ry is Earth radius. Calculations show that
at an altitude of 500 km the maximum value of the aerodynamic
torque is almost an order of magnitude smaller than the ion beam
torque. At an altitude of about 651 km, the difference is two orders of
magnitude. In this study, we will neglect the effect of the aerodynamic
moment on the rocket, considering it to be small compared with the
ion flux. In this study, the effect of the aerodynamic moment on the
rocket is neglected as small compared with the ion beam torque.
However, at low heights, the influence of the atmosphere must be
taken into account, which may be the subject of future research.

C. Stabilization of the Space Debris Oscillations

The case when space debris is in oscillation mode is considered here.
It is assumed that in the initial moment the following initial conditions
are given: 6, = 0.5 rad and 6 = 0. The numerical integration of
differential equation (25) was carried out using various ion engine’s
thrust control laws. In the first case (a thin solid line in Fig. 14), the ion
beam axis was deflected by an angle f = f* = 0.2036°, and control
law (26) was used. After each half-cycle of oscillations, the control
coefficient k was recalculated according to Eq. (27). The dependence
of control u(6, ') on an independent variable 7 is shown in Fig. 15.
The control does not reach the maximum value of 1, because it is
proportional to the amplitude of angle @ oscillations, which decreases
as aresult of the control. In the second case (dashed line in Fig. 14), the
beam axis is deflected by an angle /., = —10°, which provides the
maximum modulus of ion beam torque L™ at § = 0, and the control
law (26) was used. Figure 16 shows that the implementation of this law
(dashed curve) requires significantly less engine thrust than that in the
first case. In the third case (a thick solid line in Fig. 14), the axis is

1
£ \ log,(L})
P B e = T e oy
3 3 loglo LAz) L=10L,,
% | L=100L,,
£ \Ji—{
3 T L=1000L,,
o -5 : : :
< | | ‘
N 1508 651 856
300 400 500 600 700 800 900 1000
h, km

Fig. 13 Comparison of maximum aerodynamic and ion beam torques.
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Fig. 14 Changing the space debris deflection angle & using ion engine’s
thrust control.

L) g
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T

Fig. 15 Control law for the first case when § = * and u(0,0’) is given
by Eq. (26).

deflected by an angle f,,.,x = —10° and the control law is given by
Eq. (34). The control law is shown in Fig. 16 by a solid line (curve 3).

The results show that the third control law is most effective in terms
of stabilization rates, whereas the first law is the least effective. In the
first case, the angle passes into the e-neighborhood of the equilibrium
positiond = 0in 163,658 s (45 h, 27 minutes, and 38 s). In the second
case, this process takes 101,572 s (28 h, 12 minutes, and 52 s). In the
third it takes just 51,508 s (14 h, 18 minutes, and 28 s). In the
calculations, it was chosen that ¢ = 107.

Consider the stabilization of space debris by changing the angle of
the ion beam axis deviation . The result of integrating equation (38)
with the control (43) is shown in Fig. 17. The law of the ion beam axis
deviation angle is shown in Fig. 18. Calculations show that this law
makes it possible to stabilize space debris by transferring it to the -
neighborhood of the point@ = 0,8" = 0in 524 s, which is 8 minutes
and 44 s.

Thus, controlling the orientation of the ion beam axis allows
stabilization of the oscillations of space debris almost a hundred times
faster than that in the case of ion engine thrust control.

D. Space Debris Detumbling

A situation where space debris rotates relative to its center of mass
is considered in this subsection. It is assumed that at the initial time
the following initial conditions are satisfied: 8, = 0 and §; = 105.5
(this value corresponds to angular velocity 6, = 10 deg/s).

0.12
\
\

\
\
0.08 \ 3
< a
N
0.04 \
\N
\ /lJ M—u-c

0 20 40 60 80 100
T

Fig.16 Control law for the cases when = ., and u(0,0’) is given by
Eq. (26) (curve 2) or by Eq. (34) (curve 3).
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Fig.17 Changing the space debris deflection angle § using ion beam axis
deflection control.
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Fig. 18 Ion beam axis deflection angle control.
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Researches [29,30] show that space debris can move at such angular
velocities. As in the previous subsection, two methods of space debris
attitude motion control are considered: by changing the ion engine
thrust and by controlling the inclination of the ion beam axis.

Consider space debris detumbling by ion engine thrust control. The
simulations show that the use of control law (26) does not allow
stopping the rotation of space debris, whereas control (34) copes well
with this task. Because study [11] showed that, in order to stop the
rotation of a body by an ion beam, the beam axis should be turned in
the same direction as the direction of the body rotation, in the
considered case f = fnn = 9° should be given. Results of
integration equation (25) using the control law (34) are shown in
Figs. 19 and 20 by dashed lines. The constant control parameter was
given as k = —100. Since the control u(@’) is physically bounded
above, it was assumed that if > 1, then u = 1. Calculations show
that the phase trajectory goes into e-neighborhood of equilibrium
position 8, = 891z in 76,766 s, which is 21 h, 19 minutes, 26 s. The
dependence of the control law u(6’) on an independent variable 7 is
shown in the Fig. 21.

Control of ion beam axis direction can also be used to space debris
detumbling. Results of numerical integration equation (38) using

10007

800 [% — —
6001 ////
400n

2001 ///

0

0, rad

0 20 40 60 80 100 120 140
T10°
Fig. 19 Space debris detumbling using controls (34) and (43).
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Fig. 20 Final stage of the space debris detumbling using controls (34)
and (43).

control law (43) are shown in Figs. 19 and 20 by solid lines. Unlike
the case of engine thrust control, stabilization occurs at a different
equilibrium position 6; = 890z (Fig. 20) and takes less time:
33,663 s, which is 9 h, 21 minutes, 3 s.

In both cases, the detumbling process can be divided into two
stages. The first stage is the reduction of the angular velocity of the
space debris rotation. The second stage is a decrease in the oscillation
amplitude. The first stage is the same in both cases. The ion beam axis
is deflected by an angle = f,,;, and the ion engine is turned on at
full power. This stage ends at the moment 7 = 52.75 (Fig. 20), after
which control can be carried out in different ways. Calculations
showed that the second control method is more preferable from the
viewpoint of minimizing stabilization time.

E. Discussion

Analysis of the control laws given by Egs. (41) and (43) shows that
the implementation of the combined control, when simultaneously
controlling the ion beam axis deflection angle and the ion engine, is
inexpedient because these types of control fundamentally contradict
each other. Relay angle control requires the inclusion of thrust at full
power, but the thrust control implies varying thrust and even intervals
with the engine off. Comparing Figs. 14 and 17 shows that the angle
control solves the problem of stabilization for substantially less time
compared with the control of the ion engine thrust. The advantage of
relay angle control is the possibility of transferring space debris to the
equilibrium position for a finite time, whereas engine thrust control
allows it to approach this position asymptotically, and it takes infinite
time to reach the equilibrium. In addition, the rotation of a light active
spacecraft by its orientation engines is considered by the authors to be
a simpler task than controlling the engine thrust in a wide range.

It should be noted that the results obtained here are valid for the
particular case when the movement occurs in the orbit plane. This
ideal case is unrealizable in reality due to the unevenness of the body
surface and the presence of external disturbing moments. Therefore,
further research is needed to study the effect of out-of-plane motion
on the dynamics of controlled space debris motion. It is interesting to
try to generalize the proposed control approaches to the case of three-
dimensional motion.

1.5

1

0 20 40 60 80 100 120 140
T

Fig. 21 Control during space debris detumbling by thrust.

Another direction in the development of this work is the stabilization
of space debris attitude motion taking into account the influence of the
atmosphere. This will allow the use of ion transportation in low Earth
orbit. In this study, the case of a circular orbit was considered. Of great
practical interest is also the development of the control law of the active
spacecraft in an arbitrary orbit, taking into account the relative position
of the space debris.

VI. Conclusions

In this paper, the problem of controlling the attitude motion of
space debris during its contactless transportation by an ion beam was
studied. A mathematical model describing the motion of a mechanical
system was constructed. Two ways to control the attitude motion of
space debris were considered: by changing the thrust of the ion beam
engine and by changing the direction of the ion flux. The control law
of the thrust was proposed, ensuring the stabilization of the motion of
space debris, and the asymptotic stability of the equilibrium state
was proved. It was shown that, in the case of using the second
control method, a time-optimal control is relay control. A relay
system control law was proposed, allowing it to be transferred to an
equilibrium position. The results of numerical simulation proved that
controlling the ion flow direction is a more efficient way of stabilizing
attitude motion in terms of minimizing the time spent. The proposed
laws can be used to stop both oscillations and rotation of space debris.
The results of the work can be used in the preparation of space debris
cleaning programs on the basis of contactless methods of interaction.
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Queries

1. AU: Please check that the copyright (©) type is correct. Please note that the code will be added upon publication.
2. AU: LEO has been expanded as low Earth orbit. Please check.

3. AU: “plane motion is a special case of the three-dimensional” is not clear. Please check.

4. AU: LEO has been expanded as low Earth orbit. Please check.

5. AU: Please provide volume number for Refs. [15, 20].

6. AU: Please provide publisher name and location for Refs. [22, 23, 28].

7. AU: Please provide issue number or month of publication for Ref. [30].
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