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Abstract The paper is devoted to the investigation of the possibility of constructing a double pendulum fixed at the 

L1 libration point in the framework of the planar circular restricted three-body problem. Possible configurations of 

pendulum equilibrium positions depending on the ratios of masses and lengths of single pendulums composing the 

double pendulum are shown. The stability of two equilibrium positions is proved using Sylvester's criterion. In the 

first position, the pendulum is oriented toward a Moon, and it is oriented toward a Planet in the second position. Small 

motions near these stable equilibrium configurations are studied. The natural frequencies and mode ratios are obtained 

analytically and their dependence on the mass and length ratios of the pendulums is analyzed. The conducted studies 

demonstrate the possibility of building a space elevator in the Mars-Phobos system from the L1 libration point to a 

Moon (distance from the L1 point to the surface of Phobos ~3.4 km), or to a Planet (distance from the L1 point to the 

surface of Mars ~7800 km). This also opens up the opportunity of building a two-part space elevator from Mars to 

Phobos. The obtained natural frequencies and mode ratios allow us to predict in advance the possible motions of a 

space elevator under small perturbations relative to the stable equilibrium position. 

Keywords L1 libration point · Double pendulum · Equilibrium positions · Natural frequencies · 

Normal modes · Space elevator.  

 

1 Introduction 

 

Space tethers can be used in many future space missions as an economical and simple alternative 

to propulsion systems. Several books [1–4] and hundreds of scientific articles (eg. [5–17]) have 

explored the possibilities of space tether systems, including studies of the distant planets of the 

solar system and its moons. One such promising mission is the Phobos L1 Operational Tether 

Experiment (PHLOTE), which will explore the surface of Phobos using a tether "anchored" at the 

L1 libration point of the Mars-Phobos system [16, 17], about 3.4 km from the surface of Phobos. 

The tether will be deployed from an orbiting spacecraft located at the L1 libration point in the 

1            

http://aslanov.ssau.ru/


Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

2 

direction of Phobos.  Instruments placed in the tether's end mass will study the surface of Phobos 

from low altitude. The PHOLE mission can be improved by adding the tether system with a 

climber that moves from the tether's end mass (instrument package) to the spacecraft at the L1 

point and back. When the climber is stopped, this tether system becomes a double pendulum. A 

PHLOTE-like mission in which the tether is a space elevator [18-22] as a three-body tether system 

with a moving climber could be an evolution of the PHLOTE mission. The three-body tether 

system is a double pendulum with variable tether lengths. The first step in studying this complex 

mechanical system is to consider the situation where the lengths of the pendulums do not change. 

As it was several decades ago [23, 24], the study of the behaviour of the double pendulum in 

various applications is still relevant today [25-38]. The double pendulum fixed at L1 libration point 

differs from the classical double pendulum in that there are two gravitational forces acting on it 

from the primary bodies and a centrifugal force according to the restricted three-body problem 

[39]. 

The goal of the paper is to study the behaviour of the double pendulum fixed at L1 libration 

point as a prototype of the space elevator connecting the surface of a moon with L1 libration point. 

The problem of the double pendulum fixed at the L1 libration point is presented for the first time, 

so it is important at the initial stage to understand the main features of the behaviour and to show 

the possibility of using the double pendulum for practical purposes in studying planetary moons. 

In principle, it does not matter whether it is an Earth-Moon or a Mars-Phobos pair of primary 

bodies. The most interesting of these is undoubtedly the L1 libration point of the Mars-Phobos 

system, which is less than 3.5 km from the surface of Phobos. 

To achieve the stated goal, firstly, the basic assumptions in the framework of the circular planar 

restricted three-body problem are formulated and the motion equations of the double pendulum in 

the rotating Cartesian coordinate system are derived in polar coordinates with respect to L1 

libration point using the Lagrange formalism. Furthermore, using the Sylvester criterion, it is 

shown that the upper position (in the direction of a Planet (primary 1)) and the lower position (in 

the direction of a Moon (primary 2)) of the double pendulum are stable. Secondly, the equilibrium 

positions of the resulting nonlinear equations of motion are plotted for different mass ratios and 

lengths of the pendulums. Thirdly, eigenfrequencies and ratio modes are found for small motions 

around equilibrium configurations near the upper and lower equilibrium positions of the double 

pendulum. Finally, conclusions are drawn about the possibility of constructing a space elevator 

based on the studies carried out on the double pendulum as a three-body system. 
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2 Motion equations of a double pendulum fixed at the L1 

libration point 

 

In this section the equations of plane motion of a double pendulum in two gravitational fields of 

two primaries (Planet-Moon) in rotating polar coordinates with respect to the L1 libration point 

are derived using the Lagrange formalism in the framework of the circular restricted three-body 

problem [39]. 

 

2.1 Key assumptions 

 

The following acceptable assumptions are introduced: 

1. It is supposed that the primaries move in circular orbits around their mutual mass center 

(point O in Fig. 1). 

2. The end masses of the pendulums 
1m  and 

2m  are significantly smaller than the primary masses 

1M
 
and 

2M  

1 2 2 1,m m M M           (1) 

3. The pendulums consist of weightless rigid rods 

1 2,l l const            (2) 

where 
1 2,l l  are the pendulum lengths (Fig. 1). 

4. In the circular restricted three-body problem, the mean rotation is 

 
df

n const
dt

             (3) 

where f  is the true anomaly.  

5. In all considered cases, only in-plane motion is studied. 
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Fig. 1 The frame Oxy   

 

2.2 Motion equations of a double pendulum fixed at the L1 libration point 

 

We use the Lagrangian formalism to write the planar motion equations of a double pendulum in 

the Local-Vertical-Local-Horizontal frame Oxy  within the scope of the classical restricted three-

body problem [39] 

0
i i

d L L

dt  

 
 

 
,         ( 2)1,i    (4) 

where L  is the Lagrangian, 1 2,( )T θ  is the vector of generalized coordinates (Fig.1). The 

positions of the L1 libration point and the two end masses (
1m , 

2m ) of the pendulums can be 

written in generalized coordinates as 
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1
( ,0,0)L

Tar ,           (5) 

1 11 1 1( cos , sin ,0)Ta l l  r ,         (6) 

1 1 2 2 1 1 22 2( cos cos , sin sin ,0)Ta l l l l      r       (7) 

where a  is the coordinate of the 
1L  libration point in the frame Oxy . The velocities of the end 

masses are defined in the inertial coordinate system as the sum of derivatives of vectors (6) и (7) 

and velocity due to rotation of the frame Oxy  

1
1 1

d

dt
  

r
V ω r ,  2

2 2

d

dt
  

r
V ω r        (8) 

where (0,0, Tn ω  is the vector of the angular velocity of the frame Oxy . The Lagrangian is 

defined as the sum of kinetic and potential energy 

L T V             (9) 

The kinetic and potential energy are given by 

1 1 2
1 2

2
2 2

m m
T   V V V V ,         (10)

1 2 1 2
1

11 11 12 12 21 21 22 22

2( ) ( )
M M M M

Gm GV m 
  

 
r r r r r r r r

     (11) 

where G  is the gravitational constant, 

11 1 1 r r R , 
212 1 r r R , 

21 12 r r R , 
222 2 r r R      (12) 

The coordinates of the primaries 
1O  and 

2O in the  frame Oxy  respectively are 

1 ,0( ),0 Tp R , 2 (1 ) ,( 0 0), TpR        (13) 

where p  is the distance between the primaries, 2

1 2

M

M M
 


 is the mass ratio, 

1M  and  
2M  are 

masses of the primaries 1 and 2, respectively. 

Considering Eqs. (12) and (13), the kinetic energy (10) is given by the following equation 

 
    

2 2
2 2

1 1 1 1 12
[ sin cos cos

2(1 ) 1

m
l n nT a a l l     

 
     

 
     

  2 2 2

2

1 1 1( cos cos cos cosn a a l l l l                    

  
2

2

2 11 1 2 2sin sin sin sin )]l n                (14) 

where  

2

1

l

l
  , 2

1

m

m
  , 

1 2l l l  , 
1 2m m m         (15) 
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Similarly the potential energy can be written down in the following form 

11 12 21 2

2

2

1 2 1 ]
(

[
1 )

m
V

r r

M M

r

M M

r

G



    


         (16) 

where 

 

2 2

11

2
2 2 1 1

1 1 1 1 1 1 2

cos sin
2 cos

1 1
r

l l
l l

 
   

 

 
     

  
  ,    (17) 

 

2 2

12

2
2 2 1 1

2 2 1 1 1 2 2

cos sin
2 cos

1 1
r

l l
l l

 
   

 

 
     

  
 ,    (18) 

2 2

1 1 1 2 2 22 21 1 1( cos cos ) ( sin sin )l l lr l                

    
2 2

1 1 2 1 2

1
1 cos cos sin sin

1
l l l l       


    


,    (19) 

2 2

2 1 1 2 2 22 22 1 1( cos cos ) ( sin sin )l l lr l                

    
2 2

2 1 2 1 2

1
1 cos cos sin sin

1
l l l l       


    


,    (20) 

1 a p   , 
2 (1 )a p           (21) 

The equations of the double pendulum  (4) can be written in terms of Eqs. (14)-(21) as follows 

 2 2

12 2 122 1 12 2

1
)(2 sin ( sin 1 cos )

1
l n n         


    


     

12 1 1
2 1 1

1 1 3/2 3/2

11 21

( sin sin )
sin 1( ) ( )1 sin

l

an GM
r r


   

   


        

12 2 1
2 1

2 3/2 3/2

12 22

( sin sin

( )

)
sin 1 0,

l

GM
r r


   

  


        (22) 

2

12 1 12 12 11 2( 2 sin sin cos )
1

l
n      


    


        

2 21 1 2 2 1 2
2 123/2 3/2 3/2 3/2

21 22 21 22

sin ( sin ( ( )) 0
1

( ))
M M M M

an G n G
r r r r

l 
 


      


   (23) 

where 
12 1 2   . 

 

2.3 Total potential energy 

 

To find the equilibrium positions of the conservative system (21)-(22), we use the method 

proposed by Hertz [40, pp. 223-229]. The motion of the conservative system (21)-(22), which does 
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not depend on the corresponding coordinate, is interpreted as a concealed cyclic motion, which, in 

fact, agrees with the formalism of Routh [41, p. 60]. The kinetic energy T  depends on the mean 

rotation 
df

n
dt

   and not on the true anomaly f   according to Eq. (14), so the true anomaly is  the 

concealed cyclical coordinate. This allows to represent the kinetic energy T  as a sum of two terms, 

one   of which depends on velocities 1  and 2 , and the other T 
 is the energy of concealed 

motions, which does not depend on the generalized velocities 1  and 2 , but includes the factor 

2n  : 

T T              (24) 

where 

 
 

22 2 2

12 1cos s[ in
2(1 ) 1

m
n a a l lT   

 

  
 

          

    2 1

22

1 2

2
cos cos sin sin ]a a l l l            ,     (25) 

 
     2

1 122 2 2 21 2 cos 1 cos
2( ) 1

[
1

ml
l n l l a l       

 
      


 


   

     1 21 1 2 122 1 1 cos 1 cos cos ]an ln l                 (26) 

The potential energy extended by the kinetic energy of the concealed motions is called the total 

potential energy 

V T              (27) 

Since part of the kinetic energy T   does not depend on generalized velocities, it will not contribute 

to the first term of equation (4), and it can be formally attributed to potential energy. In this case, 

the potential energy takes the form (27), and the Lagrange equations written for the kinetic energy 

  and potential energy   will coincide with the equations of the original system.  It is clear that 

the total energy of the conservative system (22)-(23) is conserved, taking into account Eqs.  (24) 

и (27) 

E T V const                (28) 

Fig. 2 shows 
0   [

0 (0,0)  ] as a function of the coordinates 
21,   for the equal pendulum 

1   (
1 2 1700l l m  ), 1   (

1 2 50m m kg  ) fixed at the L1 libration point of the Mars-Phobos 

system. In the following, all numerical simulations are performed for the Mars-Phobos system as 

a Planet-Moon system (primaries). 

As can be seen from Figs. 1 and 2, two cases correspond to the pendulum's stable equilibrium 

position: 
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1. The pendulum is directed to the small primary 2 (Phobos) 

 
21 0, 0              (29) 

2. The pendulum is directed to the large primary 1 (Mars) 

 
21 ,               (30) 

The positions 
21 ,       represent the physical position of the pendulum (30). The unstable 

equilibrium positions are: 

1. 
21 0,      

2. 
21 , 0     

  

Fig. 2 Surface 1 - 2 - 0( )   corresponds to the case of the equal pendulum  1  , 1   

 

2.4 Application of the Sylvester criterion to analyze the stability of the lower 
21, 0    and upper 

21,    pendulum positions 

 

According to Lagrange's theorem, if the potential energy of a conservative system has a minimum 

in the equilibrium position, then that equilibrium position is stable [42]. In applications of this 

theorem, it is most convenient to expand the total potential energy   in a series of powers of 
1 , 

2 ,  and use Sylvester's criterion. For a symmetric matrix 

2

2

2 2

2

1 1

2 2

2

1 2

A
  



 

 

 

  
 
  

 
  
 
   

          (31) 
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the principal minors calculated in the equilibrium positions 
21, 0    and 

21,    should be 

positive  

2

2

1

1 0



 
  

 





 

2 2 2 2

2 2

1 1

2

2 2 2 1

0

     

       
 

      
       (32) 

If conditions (32) are satisfied, then the quadratic part of the potential energy is a positive definite 

quadratic form with respect to 
1 , 

2 , and the potential energy   is positive definite in a 

neighborhood of zero. Thus, the potential energy is an isolated minimum, and according to 

Lagrange's theorem, at the equilibrium position is stable. The principal minors (32)  are calculated 

by differentiating the total potential energy (27)  by means the symbolic programming language 

MATHEMATICA [43]. These equations are used in the construction of Fig. 3 and are not given 

here due to their rather cumbersome form. Fig. 3 shows that the principal minors (32) calculated 

at the points 
21, 0    and 

21,    are positive for every , (0.01,10.0)   . 

a 

 

b 
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Fig. 3 a Surfaces  -  -  
1 2

1 , 0 




  and   -  -  

1 2
1 , 




 ; b Surfaces  -  -  

1 2
2 , 0 




  and  

 -  -  
1 2

2 , 




  correspond to the case of equal pendulum for 100m kg , 3400l m  

 

3 Equilibrium positions map 

 

In this section, the equilibrium positions of the double pendulum are considered. To determine the 

equilibrium configuration, velocity and acceleration in Eqs. (22) -(23) are put to zero 

1 20, 0   , 1 20, 0           (33) 

and as a result, one obtains two nonlinear equations 

2 1
1 1 2 1 12 1 1 12 1 13/2 3/2

11 21

( (1 ) sin s, ) ( ) (in sin ( sin sin )
1 1

)F n a l GM l
r r

  
        

 
  


  



2
2 1 12 2 13/2 3/2

12 22

sin ( sin sin ) 0
1

( )GM l
r r

  
   


  


,       (34) 

2 1
2 1 2 2 12 1 2 123/2

21

( ) sin sin ( sin sin
1

)
1

, ( )
GM

F
l l

n a
r

      
 

   
 


     

2
2 2 123/2

22

s( )in sin 0
1

lGM

r
  


  


        (35) 

The equilibrium positions 
1 10   and 

22 0   are the roots of these equations, whose values 

depend on the ratio of masses   and the ratio of pendulum lengths  . Fig. 4 shows the maps of 

the equilibrium positions in the boundaries  
1 2,           for 6 different values of    

and  . The dotted and solid lines correspond to Eqs. (34) and (35), respectively. The intersection 

points of these lines are the equilibrium positions. Stable equilibrium positions are shown in the 

Fig. 4 with white points, and unstable positions are depicted with black points. The configuration 

of equilibrium positions varies depending on the values of the ratio of masses   and pendulum 

lengths  . Only the center point 
21, (0,0)    and the vertices 

21, ( , )       keep their 

positions in all 6 cases. 
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a 1.0  , 1.0   

 

b 0.5  , 1.0          

 
c 1.0  , 0.5              

             

d 0.5  , 0.5   

 
e 1.0  , 2.0   

 

f 2.0  , 2.0   

 
Fig. 4 Equilibrium position maps and the projection of total potential energy 

0( )   onto the 

21,  - plane 
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Figs. 5a and 5b show the equilibrium lines as intersections of the surfaces defined by equations 

Eqs. (34) and (35) when one of the parameters (  or  ) is fixed and the other is varied. 

 

a 1.0  ,  0.4,2.1      b 1.0  ,  0.4, 2.1   

 

Fig. 5 Equilibrium position maps and the projection of total potential energy 
0( )   onto the 

21,  - plane 

 

4 Small motions around equilibrium configurations 

 

Unlike the classical double pendulum in the Earth's gravitational field, which has only one stable 

equilibrium position, the double pendulum under the action of two gravitational forces and a 

centrifugal force directed toward the small primary 2 is considered. And as a result of the action 

of these forces, there are two stable equilibrium positions of the double pendulum, as shown in 

Section 2.4: 

21 0, 0   , 
21 ,             (36) 

We examine successive small motions near these two stable equilibrium positions. 

 

4.1 Small motion around equilibrium configuration 
1 20, 0     

 

For small angles 
1 2,   the linearization of Lagrange Eq. (4) results in 

1 11 12 1

212 22 2

c c

c c

 



  
   


 
  
   

          (37) 
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where  

2 1 2
11 1 23 3

1

2 2

1 21 12 22

1
[ (( ( ) ]))) (n a a l GM GM

l R
c

R R R

   



            (38) 

  2 1 2
12 3

21 22

2

(1 )
[ ]

GM GM
n a l

l R R
c

 
           (39) 

2

21

1
( ))

1

1
[ (c n l a a l

l




 
 


   


         

1 2
1 2

1 23 3 3 3

11 21 12 22

( ) ( )
1 1

1 1

( ]) ( )GM GM
R R R R

l l
     

  
   

 


  



   (40) 

2 2

22

1
[ 1 (1( ) )

1
an n

l

l
c


  

 


    


         

1 2

1 23 3

21 22

(1 ) (1 ) (1 ) (1 )
1 1 ]GM G

l

R R

l

M

       
 

       
     (41) 

where 

111
1

l
R 





 , 212

1

l
R 





 , 

121R l  222R l     (42) 

1 a p   ,  
2 (1 )a p           (43) 

Taking the solution as 

1 1 cos( )A t            (44) 

2 2 cos( )A t            (45) 

one can obtain a characteristic equation of the form  

  22

2 2

11 12 21 0c c c c             (46) 

There are two normal modes with natural frequencies 

 

2 211
1,2

22
11 22 12 21

1
( ) 4

2 2

c c
c c c c


            (47) 

which are associated with two mode ratios 

22 22 11
1,2 11 22 12 21

1 12 12

1
( ) 4

2 2

c c
b c c c c

c c






          (48) 

 

Fig. 6 illustrates the "in phase" (
2 0b   ) and "out of phase" (

1 0b   ) motions of the double 

pendulum for various combinations of mass and length ratios. 
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a 1.0  , 1.0   

1 1.53b               2 0.89b   

 

b 0.5  , 1.0   

1 3.74b        2 0.91b   

 

c 1.0  , 0.5   

1 2.10b               2 0.82b   

             

  

d 0.5  , 0.5   

1 4.79b        2 0.89b   

      

e 1.0  , 2.0   

1 1.26b               2 0.94b   

f 2.0  , 2.0   

1 0.59b               2 0.95b   
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Fig. 6 The mode ratios for the double pendulum swinging toward a small primary 2 

 

The natural frequencies (47) and the mode ratios (48) as functions of the tether length ratio 

2

1

l

l
   for various values of the pendulum mass ratios 2

1

0.5,1.0,2.0
m

m
    are shown in Figs. 7-

9. 

a 

 

b 

 

c 
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Fig. 7 a The natural frequencies 
1  and 

2 ; b and c the mode ratios 
1b  and 

2b  for the pendulum 

mass ratios 2

1

0.5
m

m
    

 

a 

 

b 

 

c 
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Fig. 8 a The natural frequencies 
1 and 

2 ; b and c the mode ratios 
1b  and 

2b  for the pendulum 

mass ratios 2

1

1.0
m

m
    

 

a 

 

b 

 

c 
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Fig. 9 a The natural frequencies 
1 and 

2 ; b and c the mode ratios 
1b  and 

2b  for the pendulum 

mass ratios 2

1

2.0
m

m
    

The lower frequency mode 
2b  is such that the two pendulums oscillate in phase while for the 

higher frequency 
1b  mode the oscillations are out of phase. The low natural frequency 

2  and its 

mode 
2b  do not depend much on the ratio of the lengths   and masses   of the pendulums. In 

contrast, the mode of high natural frequency 
1b  for the small ratio of lengths   has values of the 

order of tens and tends to zero for large values of this ratio. The high natural frequency 
1  has a 

minimum when the pendulum lengths are equal  
2 1l l  ( 1  ) and increases significantly as the 

ratio of the lengths of the pendulums decreases and as it increases. 

 

4.2 Small motion around equilibrium configuration 
1 2,       

 

By substituting the variables 

1,2 1,2               (49)  

in the Lagrange equations  (4) for small angles 
1 2,   one can write the linear differential 

equations similar to Eqs.  (37) as 

1 11 12 1

2 21 22 2

e e

e e

 

 

  
 

 
  




   
          (50) 

where  

2 1 2
11 1 23 3

11 21 1

2

22

2

2

[ ( (
1

( )) ]) ( )n a a l GM GM
l R R R

e
R

   



           (51) 

 
2 1 2

2 2

21

12

22

( )
(

1
)

GM GM
n l

R
ae

l R

   
   

 
       (52) 
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2

21

1
(1 ) (1[ )

1
( )n a

l

l
e


  

 


    


         

1 2
1 2

1 23 3 3 3

11 21 12 22

(1 ) (1 )
1 1( ) ( )]GM GM

R

l

R

l

R R

       
  

     
      (53) 

2

22 (( ) 1
1

)[ (
1

1 )an
l

l
e


  

 


   


         

 1 2

1 3 3

21 22

2

(1 ) (1 ) 1 (1 )
1 1 ]GM GM

l l

R R

       
 

        
    (54)  

where 

111
1

l
R 





 , 212

1

l
R 





 , 

121R l  , 
222R l     (55) 

1 a p   ,  
2 (1 )a p           (56) 

In this case, there are two normal modes with natural frequencies 

 

2 211
1,2

22
11 22 12 21

1
( ) 4

2 2

e e
e e e e


             (57) 

which are associated with two mode ratios 

22 22 11
1,2 11 22 12 21

1 12 12

1
( ) 4

2 2

e e
d e e e e

e e






          (58) 

 

Fig. 10 shows the "in phase" (
2 0d   ) and "out of phase" (

1 0d  ) motions of the double 

pendulum for various combinations of mass and length ratios. 

 

a 1.0  , 1.0   

1 1.49d               2 1.06d   

b 0.5  , 1.0   

1 3.13d        2 1.04d   
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c 1.0  , 0.5   

1 1.95d        2 1.10d   

 

d 0.5  , 0.5   

1 4.61d        2 1.07d   

 

e 1.0  , 2.0   

1 1.25b               2 1.04b   

f 2.0  , 2.0   

1 0.58b               2 1.03b   
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Fig. 10 The mode ratios for the double pendulum swinging toward a large primary 1 

 

Dependences of the natural frequencies (47)  and the mode ratios (48) on the relative length of 

the tethers 2

1

l

l
   for different values of the mass ratios of the pendulums 2

1

0.5,1.0,2.0
m

m
    

are shown in Figs. 11-13. 

 

a 

 

b 
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c 

 

 

Fig. 11 a The natural frequencies 
1  and 

2 ; b and c the mode ratios 
1d  and 

2d  for the 

pendulum mass ratios 2

1

0.5
m

m
    

 

a 

 

b 
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c 

 

Fig. 12 a The natural frequencies 
1  and 

2 ; b and c the mode ratios 
1d  and 

2d  for the 

pendulum mass ratios 2

1

1.0
m

m
    

a 

 

b 

23            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

24 

 

c 

 

 

Fig. 13 a The natural frequencies 
1  and 

2 ; b and c the mode ratios 
1d  and 

2d   for the 

pendulum mass ratios 2

1

2.0
m

m
    

 

Based on the analysis of curves shown in Figs. 4-13, it can be stated that the behavior of the 

double pendulums deployed in the direction of the large primary 1 or in the direction of the small 

primary 2 is very similar. 

EQUILIBRIUM CONFIGURATION 

5 Conclusions 

 

The main analytical results of the paper are summarized as follows: 

1. In the framework of the restricted circular three-body problem, the equations of motion of a 

double pendulum fixed at the L1 libration point are obtained. The possible configurations of the 

equilibrium positions, which depend on the ratios of the masses and lengths of the single 

pendulums constituting the double pendulum, are constructed. 
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2. Using Sylvester's criterion, the stability of two equilibrium positions is proved for the cases 

when the double pendulum is oriented toward the primary 2 
1 20, 0    and to the primary 1  

1 2,     . 

3. Small motions about equilibrium configurations 
1 20, 0    and 

1 2,      are 

studied.  

The natural frequencies and mode ratios are obtained analytically and their dependence on the 

mass and length ratios of the pendulums is analyzed. 

The main conclusions about the feasibility of the space elevator fixed at the L1 libration point, 

designed on the basis of the research conducted, are as follows: 

1. The stability of the vertical equilibrium positions makes it possible to construct a space elevator 

from the L1 libration point to primary 2 (distance from the L1 point to the surface of Phobos ~3.4 

km), or to primary 1 (distance from the L1 point to the surface of Mars ~7800 km). 

2. An important result is the fact that the natural frequencies and mode ratios are very close for 

the cases of a space elevator deployment both in the direction of primary 1 and in the direction of 

primary 2. This opens the possibility of building a two-part space elevator from primary 1 to 

primary 2, e.g. from Mars to Phobos. 

3. The obtained natural frequencies and mode ratios allow to predict in advance the possible 

motions of a space elevator under small perturbations relative to the stable equilibrium position. 
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