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Abstract The paper focuses on the development of a new mission to explore Phobos using an anchored tether system 

located below the L1 Mars-Phobos libration point and deployed toward Mars at a length slightly greater than the 

distance from Phobos. The basic assumptions in terms of a planar circular restricted three-body problem are 

formulated. The motion equations are derived in polar coordinates relative to the anchor point of the tether system. 

For a constant-length tether, an energy integral, equilibrium positions, and phase portraits for various anchored point 

locations on the Phobos surface are found. Analytical formulas for the tether tension force are derived and the influence 

of system parameters on this force is investigated for static and dynamic cases. To provide asymptotic Lyapunov 

stability of the tether in the vicinity of equilibrium positions, the feedback control is proposed. To validate the obtained 

results, numerical simulation of the space tether system controlled motion taking into account the eccentricity of the 

Mars-Phobos orbit using the equations in Nechvile's variables is performed. Results of this simulation confirm the 

results obtained earlier. Conclusions about the feasibility of the implementation of the suggested mission and features 

of the behavior of the tether system using the proposed feedback control are made. The results of this study can be 

used to enable many future missions throughout the solar system.  

 

Keywords Anchored tether · L1 libration point · Phobos surface · Oscillation stability ·Feedback 

control 

 

1 Introduction 
 

The restricted three-body problem is the foundation for solving many applied problems of 

astronautics, in particular, for the computation of interplanetary flights. A detailed analysis of main 

studies on this topic can be found in the Szebehely’s textbook [1]. Currently, a large number of 

papers on the restricted three-body problem have been published (eg. [2-8]), in which this problem 

is studied in detail, and these results are widely used in various astronautical missions. Equilibrium 

points or libration points in the circular restricted three-body problem represent a unique 

phenomenon in astrodynamics. In the Mars-Phobos system L1 and L2 collinear libration points 

have two additional special properties, allowing, among other tasks, a relatively simple to study of 

the Phobos surface. First, Phobos does not rotate relative to the line connecting the centers of mass 

of Mars and Phobos, on which the L1 and L2 libration points are located. Second, the L1 and L2 

libration points are located above the Phobos surface at a distance of about 3.4 km. Such a short 

distance allows to use the space tether systems technology to organize a transport channel between 

the Phobos surface and the L1/L2 libration point.  It remains only to choose the attachment point 

of the tether system: at the L1 libration point or on the Phobos surface. The scientific interest and 

complexity of the problem lies in the fact that the gravitational force of two large bodies 

(primaries) and the centrifugal force of inertia caused by the rotation of the Mars-Phobos system 

act on the tether system, located near the L1/L2 libration point. In such cases, it is most convenient 

to use mathematical models developed within the restricted three-body problem, improving them 

to describe the tether system. The field of space tethers has received very much attention in recent 

decades, with several books [9–12] and many papers [13–36] available in the scientific literature. 

The tether systems can emerge as a new technology for developing the planets of the solar system, 

their moons [24], and the exploitation of other celestial bodies as well as asteroids [21]. 
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In 2017, NASA proposed the PHLOTE mission (Phobos L1 Operational Tether Experiment) to 

explore the surface of Phobos utilizing a tether system ‘‘anchored’’ at the L1 libration point [24]. 

As a release point of the tether, it was proposed to use an orbiting spacecraft, which should hover 

in the vicinity of the L1 libration point of the Mars-Phobos system. An alternative (or 

development) to the PHLOTE mission could be a tether system anchored on the Phobos surface, 

the end mass of which is located slightly above the L1/L2 libration point. An anchored tether on 

the far side of Phobos (with respect to Mars) to deploy tethered sensors was first proposed in [9, 

25]. In 2012, a Phobos-anchored Mars Space Elevator is discussed in [26]. 

The development of effective tether system control laws and algorithms is one of the key issues in 

the development of missions using space tether systems. Li and Zhu [27] examined the control of 

the geometric profile of an electrodynamic tether by means of simulated predictive control using 

an induced electric current in the tether. Ref. [28] aimed at developing effective angular velocity 

observers for a space tether system using unit vector measurements along a tether. A new 

methodology for on-line inertia parameters estimation for a rigid space body captured by a tethered 

system is discussed in [29]. Ref. [30] develops a dynamic model with high accuracy and precision 

to investigate the suppression of partial space elevator libration caused by a moving climber by 

deploying and/or retrieving a tether on the main and subsatellites. Zhang and Huang [31] proposed 

a new underactuated tethered satellite system controller for both deployment and retrieval. This 

control scheme makes the best use of the dynamic characteristics of the tethered system. Krupa et 

al. [32] considered new optimal control strategies for the processes of deployment or retrieval of 

one satellite from or to another satellite. Tethered slingshot maneuver in the restricted elliptical 

three-body problem to change a spacecraft orbit, in which the tether attached to a celestial body 

makes a rotation in a velocity vector of the spacecraft  was studied in detail by Ferreira et al. [33]. 

The paper by Jung et al. [34] presents a dynamic analysis of a tethered satellite system with a 

moving mass. N-star general dynamic model of a tethered satellite system with a  closed-loop 

configuration was presented Zhu et al. [35]. Yu et al. [36] focused on a global dynamics of linear 

tethered satellite formation and, in particular, studied in detail an influence of initial states of the 

system on the motion shapes and their critical values. 

The paper focuses on the development of a new mission to explore Phobos using an anchored 

tether system located below the L1 Mars-Phobos libration point and deployed toward Mars at a 

length slightly greater than the distance from Phobos. The purpose of the paper is to demonstrate 

the possibility of using the anchored tether system tether system for the study of Phobos. To 

achieve this purpose, a mathematical model of a planar motion of the anchored tether system is 

developed and a simple law of stabilization of the tether system is proposed. The influence of the 

tether length, the position of the attachment point on the Phobos surface and other parameters on 

the behavior of the tether system is studied. This is the first preliminary study of the possibility of 

implementing a mission using a tether system "attached" on the Phobos surface under the libration 

point L1. The main contribution of the paper is that, based on simplified mathematical models and 

using the classical methods of Lyapunov's stability theory, the possibility of using a tether system 

near the Libration point to study Phobos is demonstrated. 

Initially, the basic assumptions in terms of a planar circular restricted three-body problem are 

formulated, and the motion equations are derived in polar coordinates relative to the anchor point 

of the tether system. Next, for a constant-length tether, an energy integral, equilibrium positions, 

and phase portraits for various anchored point locations on the Phobos surface are found. After 

that, analytical formulas for the tether tension force are derived and the influence of system 

parameters on this force is investigated for static and dynamic cases. The next stage is devoted to 

the development of feedback control, which would provide asymptotic Lyapunov stability of the 

tether in the vicinity equilibrium position. Further, to validate the obtained results, a mathematical 

model is built using Nechvile's variables, which takes into account the eccentricity of the Mars-

Fobos orbit. Numerical simulations of the mathematical model confirm the results obtained earlier. 
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Finally, conclusions about the feasibility of the implementation of the suggested mission and 

features of the behavior of the tether system using the proposed feedback control are made. 

 
2 Motion equations of the anchored tether within the context 
of the circular restricted three-body problem 
 

In this section to better understand the behavior of the Phobos-anchored tether system under the 

gravity of the two primaries 1A  and 2A  (Mars-Phobos),  and the centrifugal force in the rotating 

Mars-Phobos frame the motion equations of  the end mass C  are considered within the context of 

the planar circular restricted three-body problem [1]. It is assumed that the end body C  is many 

times less than the mass of the bodies 1A
 
and 2A . Therefore, the body C  has negligible effect on 

the other bodies. It all helps to determine equilibrium positions, to find a period of oscillations and 

to identify some other regularities of motion of a peculiar pendulum in the two-body gravitational 

field and under the centrifugal force.  

 

2.1 Key assumptions 

  

We introduce acceptable assumptions that do not distort a principled picture of the proposed 

Phobos-anchored tether mission (PATM): 

 1) It is supposed that the Mars and Phobos move in elliptical orbits around their mutual mass 

center.  In reality, the orbits have a small eccentricity 0.0 1)( 15e  , and this will be taken into 

account in verifying the main results by numerical simulations.  

2) The mass m  of the point C  attached to the tether is significantly less than the primaries’ 

masses 1m  and 2m  

2 1m m m           (1) 

3) The tether is inextensible and weightless rigid rod. This suggests that the developed 

mathematical models and the obtained solutions are valid only in the case of a stretched tether. 

4) In all considered cases, only in-plane motion is studied. 

5) This paper studies the influence of displacement relative to the gravitational vertical Ox  

(Fig.1) of the anchoring point of the tether system on the Phobos surface on the tether system 

motion near the L1 libration point. The largest Stickney Crater on Phobos [37, 38] always faces 

Mars due to Phobos’ synchronous rotation and locates under the L1 libration point. The digital 

terrain model (DTM) profile of this crater has a rather complex configuration (Fig. 2), so at this 

initial stage of the study it is approximated by a straight line perpendicular to the gravitational 

vertical at a transverse displacement within 1.5 km. This makes it easy to set the coordinates of 

the tether anchor point. 

 

 



4 

 
 

 

Fig. 1 The frame Oxy  and the polar frame  ,l   

 
 a   

 
 b  
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Fig. 2 a  Stickney crater and its DTM profile b  [38]  

 

The accepted assumptions will be used to develop a mathematical model. 

 

2.2 Motion equations in polar coordinates relative to the anchor point 

 

Consider the equations of the end mass planar motion in the Local-Vertical-Local-Horizontal 

frame Oxy  within the scope of the classical restricted three-body problem [1, 39] 

2 1
2 x

W
x n x n

x
Ty

m


   


         (2) 

2 1
2 y

W
y n y n

y
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m


   


         (3) 

where n  is mean orbital rate,  ,x yT TT is the tether tension force acting on the end mass from 

the tether. The potential of Eqs. (2) and  (3) is written as 

1

1

2

2( , )
r

m m
W x y G

r

 
  

 
         (4) 

where G is Newtonian gravitational constant, the distance between the primary 1 and the end mass 

2

1

2( )x p yr             (5) 

the distance between the primary 2 and the end mass 
2

2

2( (1 ))x yr p             (6) 

where 2

1 2

m

m m
 


 is the mass ratio; p  is the distance between the primaries 1 and 2. 

Position of the end mass C  relative to the anchoring point A  in the polar frame  ,l   is defined 

by substituting the variables (Fig. 1) 

cos , sinx yx a l y a l              (7) 

where ( , )x ya a  are the coordinates of the anchoring point A  in the frame Oxy . In the polar 

reference frame  ,l   Eqs. (2) and (3) can be written as 

0F              (8) 

1
 ll TF

m
             (9) 

where m  is the end body mass, 2 2

x yT T T  is the tether tension force acting on the end mass 

from the tether, xT , 
yT  are the coordinates of the anchoring point A  in the frame Oxy . 
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            

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 (11) 

where the distance between the primary 1 and the end mass is 
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   
2

1

2

cos sinx ya p lr a l             (12) 

and the distance between the primary 2 and the end mass is 

    
2

2

2

1 cos sinx ya ar p l l              (13) 

For a constant tether length l const  Eqs. (8) and (9) are reduced to one second-order differential 

equation for the tether deflection angle   

0F              (14) 

This equation has the following energy integral  

 
2

2
U E const


            (15) 

where E  is the total energy, the potential energy is  
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 3 Phase portraits and bifurcation diagram 
 

All phase portraits of the system (14) are plotted for the tether length 

3500l m            (17) 

Note that the distance between the Phobos surface and the L1 libration point is 3400m. Evolution 

of the phase portraits depending on the deflection of the tether anchoring points from the 

gravitational vertical can be observed in the Figs. 3-5, which show the dependence of the function 

(10)  F   and the phase portraits determined by Eq. (15). Consider the case when the anchoring 

point is located at the intersection of the gravitational vertical with the Phobos surface, and the 

transverse displacement is absent. Solving the equation 

  0F              (18) 

for  

0ya              (19) 

on the interval  2 ,2  one obtains the five stable equilibrium positions 

  2 , , 0, , 2s                (20) 

and the four unstable equilibrium positions (Fig. 3)   

 5.437, 0.845, 0.845, 5.437us rad           (21) 

a  

 

 
b  
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Fig. 3 a  The function   F   and b   the phase portrait     for the tether length 

3500l m and without the transverse displacement of the tether anchor point 0ya   

 

As shown in Fig. 3, the phase portrait is symmetric with respect to the ordinate axis for the 

anchored tether without the transverse displacement. In the presence of the transverse 

displacement of the tether anchor point, the symmetry of the phase portrait is broken. For  

500ya m  the stable equilibrium positions are 

 3.1866.147, 0., ,137 3.098s rad          (22) 

and the unstable positions points are  

 5.532, 0.922 ,0.751, 5.361us rad          (23)  

a  

 

 
b  
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Fig. 4 a  The function   F   and b  the phase portrait     for the tether length 

3500l m and for the transverse displacement of the tether anchor point 500ya m  

 

As the transverse displacement of the tether anchoring point increases, the central stable point (

0s  )  shifts the right.  Under the following conditions: 

  0F   , 
 

0
F 







        (24) 

this point becomes neutral. A phenomenon known in non-linear dynamics as saddle-node 

bifurcation occurs, when two equilibria position collide and annihilate each other. For the tether 

length 3500l m  it takes place in the case of the transverse displacement of the tether anchor 

point 1164.6ya m  (Fig. 5). 

a  

 
b  

 
 

Fig. 5 a  The function   F   and b  the phase portrait     for the tether length 

3500l m and for the transverse displacement of the tether anchor point 1164.6ya m   

 

A bifurcation diagram as a function of the transverse displacement of the tether anchor point is 

presented in Fig. 6 for the tether length 3500l m . Solid lines in Fig. 6 correspond to stable 

equilibrium positions, and dashed lines indicate unstable positions. Two bifurcation values of the 

ya  parameter can be seen in the diagram  
1 1164.6ya m  , 

2 1164.6ya m . The phase portrait 

corresponding to bifurcation value 
2ya  is shown in Fig. 5. 
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Fig. 6 Bifurcation diagram  

 

4 Tether tension force 
 

4.1 Static tension force of tether 

 

Note that the above calculations are valid only for the stretched tether. Obviously, the anchored 

tether deployed along the gravitational vertical is stretched if its length is greater than the distance 

between the point L1 and the tether attachment point because the end mass is located above the 

point L1, as viewed from the side of the Phobos.  

If the constant length tether is anchored without transverse displacement ( 0)ya  , then for the 

central stable point ( 0, 0, 0)s      the static tension force can be calculated using Eq. (9) 

according to the following formula 

 
 
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a p l ma p l m
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    
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 
 
 

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

 
   (25) 

For 5000kg end mass and the tether length 100 m longer than the distance between the L1 point 

and the Phobos surface ( 3400m ) Eq. (25) gives the tension force of 0.23 N. If the excess is 1000 

m, then the tension force is 2.2 N. Fig. 7 shows that the tension force of the deployed tether along 

the gravitational vertical from the Phobos surface increases almost directly proportional to its 

length, so for the end mass of 5000 kg and length of 5000 m the tension force is 3.4 N. 

 

 
 

Fig. 7 The tension force of the vertically deployed tether from the surface of Phobos 

 as a function of its length for the end mass (orbiter) equal to 5000 kg 
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In the conclusion here notice that if the tether is oscillating or/and is anchored with the transverse 

displacement, then the issue of its tension deserves a separate study. 

 

4.2 Dynamic tension force of tether 

 

The dynamic tether tension force can be found using Eqs. (9) and (11) as 

  2 2cos si   2nl x yT mF a a ln lm n l         


  

       21

3 3

1 2

sin 1 cossin cos y xy x
a a p l ma a p l m

r

G

rl

            


  

 (26) 

First, consider the case when the tether is anchored on the Phobos surface without the transverse 

displacement relative to the gravitational vertical ( 0)ya  . Figs. 8 and 9 show the tether tension 

force and the tether deflection angle from the gravitational vertical for the end mass of 5000 kg at 

different initial tether deflection angles and for different tether lengths: 3500 and 4500 m. Figs. 

8(a), 9(a), and 10(a) depict thin horizontals with strokes to the outside ,
2 2

  
 

 
, which mark the 

limits of possible tether oscillations due to the assumption of the surface topography of Phobos 

below the L1 libration point, as shown in Fig. 1. 

 

a  

 
 b  

 
 

 

Fig. 8 a  The tension force and b  the tether deflection angle for the tether length 3500 m 

without the transverse displacement relative to the gravitational vertical 0ya   

 
a  
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 b  

 
 

Fig. 9 a  The tension force and b  the tether deflection angle for the tether length 4500 m 

without the transverse displacement relative to the gravitational vertical 0ya   

 

Fig. 10 shows the same as in Fig. 9 for the tether length 4500 m and with the transverse 

displacement relative to the gravitational vertical 250ya m , for which the stable position is 

different from zero and equal to 0.03s rad  . 

 

a  

 
 

 b  
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Fig. 10 a  The tension force and b  the tether deflection angle for the tether length 4500 m for 

the transverse displacement relative to the gravitational vertical 250ya m  

 

By numerical simulation, let's estimate the contribution of the separate components of the tension 

force of the tether T  (26). Three components can be distinguished: the gravitational force 

component GnT , the centrifugal inertial force component centrifugalT , and the Coriolis force 

component coriolisT . 

  2 cos sin  Gn x yanT m a l   

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

  

 (27) 

centrifug

2

al mT l           (28) 

coriolis 2T lmn            (29) 

Obviously, according to  (26)-(29)  the following equality is always true  

centrifugal coriolisGnT T T T           (30) 

Fig. 11 illustrates the contribution of each component of the tether tension force for the following 

parameters  

5000 , 4500 , 250ym kg l m a m    

and the initial conditions 

0 00.5 , 0rad    

a  

 
b  



13 

 
 

Fig. 11 a  The tension force and b  the tether deflection angle for the tether length 4500 m for 

the transverse displacement relative to the gravitational vertical 250ya m  

 

According to the formulation of the problem, the simulation results presented above correspond to 

the physical process only when the tether is stretched ( 0T  ). 

The graphs in Fig. 8-11 allows one to make some conclusions. 

- The greater the amplitude of oscillation of the tether, the greater the period of oscillation. 

- The greater the amplitude of oscillation and the length of the tether, the greater the tether tension 

force. 

- According to the results of the numerical simulation shown in Fig. 11 and Eq.  (29) a significant 

contribution to the tension force is made by the Coriolis force coriolisT , which extends the tether at 

0   and compresses the tether at 0  . 

- Figs. 9 and 10 show that a small displacement of the tether anchoring point from the gravitational 

vertical does not fundamentally change the tether tension force. 

 

5 Feedback control development 
 

The following feedback control developments all have the common goal to ensure the absence of 

oscillations of the tether system relative to a stable point, or in other words, to guarantee a 

asymptotic stability for all admissible variations. Consider only cases where a stable equilibrium 

position exists near the gravitational vertical, such as those shown in Figs. 3 and 4. 

The following feedback control is proposed 

u c             (31) 

where 0c   is a constant rate feedback gain. This control law can be realized by thrusters of the 

orbiter, which is the end mass of the tether system. Then, taking into account Eq. (8) and the 

feedback control (31), the tether oscillation is described by the equation 

F u              (32) 

where  function F  is determined Eq. (10). 

To investigate the stability of the potential feedback control law in Eq. (31), the difference of the 

total energy and the potential energy calculated in stable equilibrium position sU  is used as a 

positive definite Lyapunov function candidate 

   
2

2
sV U U


 

 
   
 

         (33) 

or, according to Eq. (16) 
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 
2 2

1 2

2

1 2

cos sin
2

x y s

m mn G
V

l l
a a

r r
U


 

 
      

 
     (34) 

By definition, the difference    sU U   is a non-negative value, therefore function (33) is 

definitely positive in the vicinity of the stable equilibrium position. 

The derivative of the function  (33) with respect to time using Eq. (32) is written as 

 
dV dU

F u
dt d

    


 
     
 

       (35) 

If the constant rate feedback gain is positive ( 0c  ), then with the control law (31) is definitely 

negative 

2 0
dV

c
dt

             (36) 

Thus, the system (32) is asymptotically stable according to Lyapunov. Fig. 12 illustrates the 

Lyapunov function (34) for the following parameters of the tether system and the control constant 

4500l m ,  250ya m ,  0.01c   ,  0.03s rad       (37) 

Note that for the parameters (37) the five stable equilibrium positions exist on the interval 

 2 ,2   

  , 3.121, 0.031, 3.1216.253 6.314,s rad          (38) 

and the four unstable equilibrium positions  

 5.437, 1.107, 1.058, 5.176us rad           (39) 

 

 
 

Fig. 12 The Lyapunov function (34) for the parameters (37) 

 

Figs. 13 and 14 depict the stabilization of tether system during the implementation of the feedback 

control (31) for the parameters (37). In the first case, the initial point is located in the vicinity of 

the stable point 0.031s rad  , and in the second case - in the vicinity of the unstable point  

1.058us rad  . Note that only in the first case (Fig. 13 a ), the tether always remains stretched 

during the entire stabilization period. 

 a  
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 b  

 
 

 

Fig. 13 a The tension force and b  the angle of the tether deflection from the vertical for the 

end mass 5000 kg and parameters (37) under initial conditions 0 00.5 , 0rad    

 

 a  

 
 

 b  
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Fig. 14 a  The tension force and b  the angle of the tether deflection from the vertical for the 

end mass 5000 kg and parameters (37) under initial conditions 0 0.1 05 , 0rad    

 

6 Validation within an elliptic restricted three-body problem 
for the anchored tether 
 

In this section, the results obtained above for the simplified circular mathematical models are 

validated by using an elliptic restricted three-body problem for the anchored tether. For this 

purpose, the motion equations of the tether system in Nechvile’s variables are derived, using which 

the numerical simulation is performed to confirm the validity of the results obtained earlier. 

 

6.1 Equations of motion in polar coordinates based on Nechvile’s variables 

 

We derive the planar motion equations of the end mass C  in two gravitational fields of two 

primaries 1A  and 2A  (Mars-Phobos) in polar coordinates relative to the anchored point on the 

Phobos surface in terms of the restricted elliptic three-body problem [1, 29]. The distance between 

the two primaries is 

1 cos

p
r

e f



          (40) 

where p  is the semilatus rectum, e  is the eccentricity of the two-body orbit of the primaries, and 

f  is the true anomaly. In the barycentre-centred synodic coordinate system, which rotates with 

the two primaries and using Nechvile’s variables  ,  , the end mass motion can be described in 

dimensionless form as [1, 39] 

1

cos
2

1 e f
 



 




 


         (41) 

1

cos
2

1 e f
 



 







          (42) 

where   is the potential function given by 

 2 2

1 2

1 1

2 r r

 
 


        

1
0

2






 
 

    (43) 

 
2

1

2r       
2 2

2 1r          (44) 
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where (.) (.)
d

df
   and 

2

2
(.) (.)

d

df
  ;  The dimensionless coordinates of the tether anchor point 

and the tether length are entered as follows  

xa

p
   , 

ya

p
  , 

l

p
          (45) 

Position of the end mass C  relative to the anchored point in a polar reference frame  ,l   is 

defined by substituting the variables  

cos , sink k                    (46) 

where c s1 ok e f  . 

Eqs. motion (41) and (42) in the polar reference frame (Fig. 1) are written as  

0               (47) 

  T               (48) 

where  T  is the dimensionless tether tension force, 

   2

2
cos sin 2 sin 1 2 1

1
e k t k

k
        


             

       
3 3

1 2

1 cos sin cos 1 sin           

 

        
 



  (49) 

   
2

1
  2 2 sin cos sinek t

k
                   

       
2 3 3

1 2

1 cos sin 1 cos sin1 k k

k

             

 

            
  
  

 (50) 

where dimensionless distances between the primaries and the end mass 

   
2

1

2
cos sink k                 (51)

   
2

2

2
1 cos sink k                   (52) 

Assuming that the tether length is constant  

0, 0l const           (
l

p
  )    (53) 

then from Eq. (48), the tether tension force is defined as 

   2

1
2 cos sinT

k
           

       
2 3 3

1 2

1 cos sin 1 cos sin1 k k

k

             

 

            
  
 
 

 (54) 

The tether tension force (54) in dimensional form is written as   

 
   2

2

2

1

4

1
2 cos sin

G m m p
m

kr
T       


      




       
2 3 3

1 2

1 cos sin 1 cos sin1 k k

k

             

 

            
   
 

 

 (55) 

Taking into account the feedback control (31), the equations for the tether deflection angle (47) 

are rewritten as 
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 

2

1 2

r

G m m p
c    


         (56) 

It should be noted that the Eq. (55) is exact for the simplified system of equations (41), (42). 

Estimating the accuracy of this formula requires building a more accurate mathematical model of 

the space tether system and comparing the simulation results, which is beyond the scope of this 

study. 

 

6.2 Numerical simulations 

 

The small eccentricity of the Mars-Phobos orbit ( 0.0151e  ) has no significant effect either on 

the oscillations of the anchoring tether system or on the tether tension force both with and without 

transverse displacement of the anchoring point, as Figs. 15 - 17 show. In all cases considered, the 

tether anchoring point is located on the Phobos surface without transverse displacement from the 

Ox axis, i.e.  0ya  . Fig. 15 depicts the results of the numerical simulation without the feedback 

control ( 0c  ) and Fig. 16 with the feedback control ( 0.0001c  ) of the tether oscillation (31)

. The tether length and the initial tether deflection angle are equal for this case, respectively   

0 04500 .5, 0m al r d           (57) 

 

  a  

 
 

 b  

 
 

 

Fig. 15   a  The tension force and b  the angle of the tether deflection from the vertical for 

without control 0c   the end mass 5000 kg and the tether 4500 m  

  

 a  
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 b  

 
 

 Fig. 16 a  The tension force and b  the angle of the tether deflection from the vertical 

with control 0.0001c   for the end mass 5000 kg and the tether 4500 m  

As can be seen from Figs. 16a and 17a, doubling the tether length ( 0 9000l m ) compared to the 

base value ( 0 4500l m ) leads to a fourfold increase in the maximum tension force. 

a  

 
 

 

 b  
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 Fig. 17 a  The tension force and b  the angle of the tether deflection from the vertical 

with control 0.0001c   for the end mass 5000 kg and the tether 9000 m  

 

Numerical simulation shows that in the case of a small eccentricity, the proposed control still 

provides asymptotic stability. 

 

7 Conclusions 
 

The main results and conclusions about the possibility of implementing the conceptually new 

mission to study Phobos using the anchored tether system can be summarized as follows: 

1. The planar motion equations the anchored tether under the Mars-Phobos L1 libration point 

have been derived for two cases: without taking into account eccentricity and using the 

Nechvile’s variables with eccentricity. The tether has been considered as weightless and 

inextensible rod with an end mass. The energy integral, equilibrium positions have been found 

and phase portraits have been constructed for various anchored point locations on the Phobos 

surface. 

2. Analytical formulas have been obtained to determine the tether tension, and it is shown that 

for the end mass of 5000 kg, this force is relatively small and does not exceed 20 N both in 

the static and dynamic state of the tether.  

3. To reduce the amplitude of tether oscillations in the vicinity of the equilibrium position, the 

feedback control that can be implemented using thrusters has been proposed.  It is shown that 

this control provides asymptotic stability of the tether system and this fact has been confirmed 

by numerical simulations. 

4. Simplified mathematical models and analytical results have been substantiated and validated 

by numerical simulations based on more accurate models, taking into account the eccentricity 

of the Mars-Phobos orbit. 

The proposed anchored tether system mission can be considered both as a separate mission and as 

a second phase of the PHLOTE mission, when the orbiter (end mass) first hangs at the L1 libration 

point, then the tether is anchored on the Phobos surface after which the anchored tether holds the 

orbiter. The second objective, which can be solved by the anchored tether system is an Orbiter-

Phobos space elevator with a length of about 3-4 km. For a space elevator it is a very short length. 

This is the uniqueness of the Mars-Phobos L1 and L2 points of libration. Here it is relevant to note 

that in the Earth-Moon system the distance of the L1 libration point to the lunar surface is 

approximately 57,000 km, more than 15 thousand times more. Also and the length of the Earth-

GEO space elevator is about 100 thousand km. 

In continuation of this study, the proposed approach may be useful as other planet-moon systems 

and for other collinear libration points, for example L2 libration point. The development of the 

work is to study the behavior of the anchored system with an elastic-viscous tether, as well as to 
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study the possibility of building a space elevator Phobos - L1 libration point. The presented 

research is preliminary, which, quite possibly, will be developed and specified, if the interest in 

study of Phobos and other small celestial bodies will be increase. The proposed tether mission 

scene in the paper is not the only possible scene. Alternative schemas are quite possible and this 

may be the subject of the following works.  
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