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Capture trajectories into vicinity of collinear libration points 

by variable electrostatic field 

Vladimir S. Aslanov1   

Samara National Research University, 443086, Samara, Russia 

 

Nomenclature 

d  =   distance between primeries (planet-moon), m  

G    =  Newtonian gravitational constant, 6.67428 ⋅ 10-11, 3 2 1m s kg  

C
k  =  Coulomb’s constant, 8.99 ⋅ 109 2 2m /N C  

1
m   =  mass of a planet, kg   

2
m  =  mass of a moon, kg  

3
m  =  mass of the E-body, kg  

n  =  mean orbital rate of the space tug, /rad s  

orb
q

3
q  =  charge equal for the  orbiter and the E-body, C   

D
 = Debye length, m  

 = 
2 1 2
/ ( )m m m  

 = product 
3C orb

k q q , 
2N m  

 

Subscripts 

 

1 = Planet 

2 = Moon 

3 = E-body 

I.  Introduction 

The restricted three-body problem is a classic celestial mechanics issue. Its study made a great contribution to the 

theory of space dynamics and celestial mechanics. The great mathematicians Euler and Lagrange were at the origin 

of the solution to this fundamental problem. The three collinear Lagrange points were discovered by Euler [1] a few 
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years before Joseph-Louis Lagrange discovered the remaining two [2]. In 1772, Lagrange considered the general 

three-body problem and demonstrated two special constant-pattern solutions, the collinear and the equilateral, for any 

three masses, with circular orbits. The restricted three-body problem is the basis for solving many space applications, 

in particular, for calculating interplanetary flights and launching spacecraft and satellites. A detailed analysis of major 

studies on this topic can be found in the Szebehely’s textbook [3]. The book discusses the regularization of the motion 

equations, manifold of the states of motion, equilibrium positions, motion near these positions, application of 

Hamiltonian dynamics methods to the restricted problem, its periodic orbits, and quantitative aspects. A detailed 

numerical analysis of three-dimensional periodic halo orbits near collinear libration points in the restricted three-body 

problem was performed by Howell [4]. For application to the n-body problem Marchand, Howell and Wilson [5] 

developed efficient techniques for preliminary design of trajectory arcs in nonlinear autonomous dynamic systems in 

which a solution is subject to algebraic interior and exterior constraints. Woo and Misra [6] investigated the spacecraft 

motion in the vicinity of a binary asteroid system as the circular restricted case. The asteroids were considered as rigid 

bodies. Addition equilibrium points were found numerically for some special cases. Biggs and Negri [7] considered 

solar sail spacecraft controlled motion within the circular restricted three-body problem. The spacecraft moves in the 

gravitational field of the Earth and the Moon, taking into account the perturbation introduced by the solar pressure on 

the sail. Alessi and Sánchez [8] presented a semi-analytical approach, which is based on a perturbation procedure, for 

study the three-dimensional motion of a negligible mass body in the circular restricted three-body problem. In the 

context of the three-body problem, a relative dynamics of two spacecraft (chaser and target), flying in the vicinity of 

the smallest primary, is considered by Franzini and Innocenti in [9]. Catlin and McLaughlin [10] presented an 

investigation of the existence and nature of formation flight trajectories near the Earth–moon triangular libration points 

in the circular restricted three-body problem, and obtained analytical equations of motion that describe a relative 

dynamics within a rotating, lead-satellite-centered coordinate frame. 

A new development of the classical restricted three-body problem was presented in the papers by Aslanov [11, 

12], which consider the motion of a small electrostatic body (E-body) in an attractive electrostatic potential field (E-

field) generated by an orbital spacecraft (orbiter) located at one of the unstable collinear libration points. In this case 

the functional value of the collinear libration point changes radically. The unstable libration point transforms into an 

attracting center. The "old" collinear libration point splits into two new unstable collinear libration points to the right 

and left of the "old" point, forming a new Hill's E-sphere [12]. Thus, two gravitational fields from big bodies 

(primaries) and the E-field with the center at the «old» collinear libration point affect the small E-body. All these fields 

are potential, and if the body enters, the Hill's E-sphere centered at the "old" libration point, over time it will leave it. 
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If it is required that the E-body reaches the vicinity of the libration point, then in addition to potential forces, a 

dissipative (non-potential) force must also acts. In [13] additional forces from the permanent magnets placed on the 

orbiter and the E-body (capsule) solve this problem, while in paper [11] this issue was not considered at all. 

The purpose of the paper is to create a control law of the electrostatic charge of the orbiter, which irreversibly 

leads the E-body in the vicinity of the "old" collinear libration point. Solving this problem involves three stages: 

 - Formulation of assumptions that do not violate a physical essence of the problem, and derivation of a 

mathematical model convenient for further calculations. 

- Development and analytical analysis of a feedback control law of the orbiter charge.  

 - Verification of the feedback control law by means of numerical simulation. 

These three stages are devoted to three main sections of the paper.  

 

II. Key assumptions and motion equations in polar coordinates 

A. Key assumptions 

 We introduce acceptable assumptions that do not violate a physical essence of the study problem:  

1. A circular restricted three-body problem is studied in which the two main bodies (primaries) are considered 

homogeneous. 

2. Mass of the E-body 
3
m  is significantly less than the mass of any of the primaries 

3 2 1
m m m                 (1) 

3. In all considered cases only in-plane motion is studied. 

4. The Hill's sphere is located inside Debye sphere, as it appeared was accepted in [11,12]. Note that Debye 

length (radius of the Debye sphere) 
D

 is an important parameter because the Electrostatic field rapidly 

decreases beyond this length by the Debye shielding effect. However, the Debye length near the collinear 

libration points is usually unknown. Given in the literature, for example in [15], only approximate values of 

the Debye length for the Stickney crater, located on Phobos' surface directly under the L1 libration point at a 

distance of approximately 3.5 km. Depending on Mars local time, this parameter ranges from 13 m to 47 m. 

5. A simple sphere-spherical model of electrostatic force is employed as an electrostatic model of the orbiter 

and E-body, which is obtained using assumptions and equations from the paper by Jasper and Schaub [16]. 

The orbiter and E-body are modeled as spheres with radii 
1
R  and 

2
R , respectively. If the distance between 
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the bodies (R ) is assumed to be much greater than the given radii 
1 2
,R R R , then the simpler equations 

take place 

3
33,orb orb

orb
c c

R V R
q

k k

V
q          (2) 

where 
3
,

orb
q q  are charges of the orbiter and E-body, respectively; 

3
,

orb
V V  are voltage of the orbiter and E-

body, respectively; and 
9 2 28.99 10 m /

c
k N C

 
is the Coulomb constant. In this case an electrostatic force 

F  between the orbiter and E-body is: 

3
2 2

orb
c

q q
F k

R R
           (3) 

where 
3c orb

k q q . 

B. Motion equations in polar coordinates 

 Consider the equations of the E-body planar motion in the Local-Vertical-Local-Horizontal frame Oxy  within the 

scope of the classical restricted three-body problem [3,14] 

2

3
2

W x
x

R

a
n x ny

x
           (4) 

2

3
2

W y
y n y n

y R
x             (5) 

where 

 1 2

2 2 2 2
( , )

( ) ( (1 ))

m m
W x y G

x d y x d y
        (6) 

 
1 3 1 1

( ),M M M L YXR             (7) 

3R

R
F ,             (8) 

where 2

1 2

m

m m
, d  is the distance between Mars and Phobos, a  is the abscissa of the 

i
L  libration point 

1,2,3i ,
1
m  is mass of a planet, 

2
m  is mass of  a moon, F  is the Coulomb force as a vector, ,X Y are the 

coordinates of the frame 
i
LXY . Points 

i
M   are shown in Fig. 1. 
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Fig.1 The frame 
i
LXY and the polar coordinates ,R  

 

Thus, Eqs. (4) and (5) describe the flight of the E-body under the action of the attractive electrostatic force (8) and 

the gravitational influence of the uniformly rotating planet-moon system. Since we study the motion of the E-body 

relative to the orbiter, which is in the 
i
L  libration point 1,2,3i , it makes sense to pass from the frame Oxy  to 

the frame
i
LXY  by changing the variables (Fig. 1). Position of the E-body 

3
M  relative to the 

i
L  libration points in a 

polar reference frame ,R  is defined by substituting the variables 

cos , sinx a R y R             (9) 

where a  is the abscissa of the 
i
L  libration point 1,2,3i , which are the roots of Eq. (4) at no the Coulomb force 

and as shown in [14] when: 0, 0, 0y y x . Eqs. (4) and (5) in the polar reference frame (Fig. 1) are written as  

2U
R R n

R
            (10) 

2
U R

n
R

            (11) 

The potential of Eqs. (4) and (5)  is written as 

2
1 2

1 2 3
2

1m m
U G nr

r r m R
          (12) 

where the distance between the mass center of the primaries and the E-body is   

22 2 cosr R R a p a p        (13)  

the distance between the primaries 1 and the E-body 

2 2

1
2 cosr a R aR            (14) 

and the distance between the primaries 2 and the E-body is 

2 2

2
( ) 2( ) cosr d a d a R R         (15) 

Page 5 of 13

Review copy- Do not distribute

Submitted to Journal of Spacecraft and Rockets

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

The charges of the orbiter and the E-body are constant and have the opposite sign, therefore 

0
C orb cont
k q q const           (16) 

Eqs. (10) and (11) correspond to the energy integral (total energy) per unit mass 

2 2 21

2
E R R U const           (17) 

The negative doubled total energy per unit mass in the rotating Cartesian frame Oxy  is a first integral, called the 

Jacobi integral [3,14] which is written as 

2E nstJ co ,           (18) 

As shown in Fig. 2, the attractive E-field splits the 
i
L 1,2,3i  collinear libration point into two new collinear 

points ,
i i
L L , and the greater the potential (12) and the Debye length the greater the distance between the new 

libration points and the ‘‘old’’ original libration point [11,12]. The E-Hill’s sphere is the region in which it dominates 

the attraction of the E-body. The boundary of the E-Hill’s sphere is the surface of zero velocity and for the planar case 

represents the cross section of zero relative velocity 

,U R const          (19) 

 
 

Fig. 2 Splitting of the unstable Mars–Phobos 
1
L  libration point to two the 

unstable 
1
L  and 

1
L  points, the “old” 

1
L  libration point, the zero-relative-velocity  

cross section (blue) for 
20.066 Nm741  and 

3
10m kg   

 

The new collinear libration points 
1
L  and 

1
L  presented in Fig. 2, caused by the E-field, lie on the axis 

1
L X , are 

restricted by the Debye sphere and can be found as solutions to the following equation 
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/ 0,

0
U

R
            (20) 

The coordinates of the new libration points in the polar reference frame ,R  are as follows       

   
1

24.220: , 0R mL          (21) 

1
24.243: ,R mL          (22) 

 

III. Choice and analytical analysis of a feedback charge control law 

 

 In this section, a feedback charge control law is introduced to stabilize separation distance rate between the E-

body and the orbiter, which is at the 
i
L  "old" collinear point. According to Eqs. (10) and (11), only potential forces 

act on the E-body, so if the body crosses the boundaries of the E-Hill’s sphere from outside, it means that its total 

energy is greater than the potential energy at one of the unstable points 
i
L  or 

i
L . In this case, after some time, the 

E-body can leave the E-Hill’s sphere. An irreversible motion of the body from the Hill sphere boundary to the E-field 

center (the "old" collinear libration point) can occur only due to the action of dissipative forces, i.e. forces that reduce 

the total energy of the body. It should be kept in mind that the only means of control is the value of the orbiter charge 

and the electrostatic force acts on the E-body in radial direction, i.e. along the radius R  in the polar reference frame 

,R .  

Assume the charge control law with feedback of the separation distance rate as 

0
1

orb

R

Rn
q q           (23) 

where 
0
q  is the initial value of the orbiter charge at reaching the vicinity of the E-Hill’s sphere by the E-body,  is 

the dimensionless control coefficient. If the orbiter charge is variable, the product  will also be variable in the motion 

Eqs. (10), (11) and (12)  

0
1

R

Rn
           (24) 

For the attracting E-field, the charges of the orbiter and the E-body have the opposite sign, therefore 

0 0
0

C cont
k q q const           (25) 
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Differentiating the total energy (17) of the E-body by Eqs. (10), (11) and (12), taking into account the orbiter charge 

(23), gives the rate of change of the total energy as 

2

3

0
3

0
R n

dE
R

dt m
           (26) 

It follows from Eqs. (20) and (26) an obvious fact that when orbiter charge is controlled by the feedback law (23), the 

total energy of the E-body decreases over time. However, the feedback law (23) has an effect on the E-body until the 

body motion turns to a uniform rotation around the "old" libration point inside the E-Hill’s sphere, i.e. 

0, ,R R const const          (27) 

Note, the feedback law (23) may have a more common kind, which will lead to a reduction of the total energy (17), 

so, for example 

0
1

orb

j

q q
R

Rn
           (28) 

where 1,3,5...j is a positive odd integer. In this case the derivative of the total energy can be written as 

2

1

3

0 0
j

j

jR

dE
R

t m nd
           (29) 

IV.   Numerical simulation 

This section illustrates the effectiveness of the proposed control law (23) using numerical simulation of Eqs. (10) 

and (11) as an example of the 
1
L  libration point in the Mars-Fobos system, in which the orbiter is located. Taking into 

account Eqs. (23) and (2) the orbiter's voltages should be changed according to the control law 

0
1

orb

R

Rn
V V             (30) 

where 
0
V  is the initial constant voltage. For the numerical simulation, the following parameters of the orbital apparatus 

and E-body are accepted  

0 3 3 3
3.0 , 20 , 0.5 , 20 , 10

orb
R m V kV R m V kV m kg       (31) 

Then by virtue of Eqs. (2) and (16) the initial value of the product is 

2

0
0.06674 Nm1            (32) 

and the coordinates of the unstable libration points  
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1
24.220: , 0R mL  

1
24.243: ,R mL  

 Consider four trajectories of the E-body, which start at four different points as shown in Figs. 3 and 5 

0

3
0, ,
2 2

             (33) 

Other initial conditions for numerical integration of the equations are taken the same for all initial points  

0
27.0R m

0
0.01 /R m s ,

0
0         (34) 

If talking about getting the E-body inside E-Hill's sphere, then outside this sphere, the total energy (17) of the E-

body should be greater than the potential energy on the sphere’s shell (12) and, therefore, at the saddle points 
1
L  and 

1
L . Only in this case, the E-body trajectory can cross the sphere's shell. The total energy at the initial points of the 

trajectories (33), (34) exceeds the potential energy corresponding the unstable points of libration 
1
L  and 

1
L , i.e. 

0 0 0 0 * *
, , , ,E R R U R          (35) 

where the coordinates
*
R  and 

*
of the points 

1
L  and 

1
L  are determined by Eqs. (21) and (22). 

Figs. 3 and 5 show the trajectory capture in the vicinity of the 
1
L  “old” libration point by controlling the orbiter 

voltages (30) the four trajectories of the E-body (33) for two values of the control coefficient 0.01, 0.1 . Figs. 4 

and 6 depict the profile of the orbiter voltage corresponding to the trajectories shown in Figs. 3 and 5. The voltages 

for the trajectories starting at opposite points are the same.   
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Fig. 3 Capturing the four trajectories of the E-body (33) in the vicinity of the 
1
L  “old” libration point 

 by controlling the orbiter voltages (30) for the control coefficient 0.01  

      

Fig. 4 The orbiter voltages for the four controlled trajectories of the E-body (33) by means of the law(30) for 

the control coefficient 0.01(dotted line  
0

3
,
2 2

; solid line 
0
0, ) 

 

Fig. 5 Capturing the four trajectories of the E-body (33) in the vicinity of the 
1
L  “old” libration point 

 by controlling the orbiter voltages (30) for the control coefficient 0.1  
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  Fig. 6 The orbiter voltages for the four controlled trajectories of the E-body (33) by means of the 

law(30) for the control coefficient 0.1  (dotted line  
0

3
,
2 2

; solid line 
0
0, )  

As shown in Figs. 3 and 5, over time, all trajectories of the E-body go to a slow steady rotation around the 
1
L  

“old” libration point at a distance of no more than 5 m. In the first case (Fig. 3), the relative velocity of the E-body is 

approximately 0.05 m/s and in the second case (Fig. 5), it is less than 0.04 m/s.  

Note that in the first case (Fig. 4) the orbiter voltage reaches 24 kV, which is 20% higher than the nominal voltage 

(
0
20V kV ). In this sense, the second case (Fig. 6) is preferable to the first, because the orbiter voltage slightly 

exceed the nominal value of 20 kV. 

If the orbiter voltages are not controlled when the control coefficient 0  in the control law (30), and the nominal 

value (
0orb

V V ) is maintained, the four trajectories leave the E-Hill’s sphere without any rotation around the 
1
L  

“old” libration point as shown in Figs. 7.          
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Fig. 7 The four trajectories of the E-body (33) in the vicinity of the 
1
L  “old” libration point 

 without the control ( 0 ) 

This section confirms the possibility to use the proposed orbiter voltage control law for E-body capture (30), at the 

same time it is clear that detailed studies, taking into account limitations on the rate of change and on the magnitude 

of the orbiter voltage and other limitations and other restrictions should be performed in future works. 

 

V. Conclusions 

This paper is a development of the work [11,12] on the splitting of collinear libration points by means of a 

stationary artificial electrostatic field, which now considers a variable E-field. The new main results and conclusions 

of the paper can be summarized as follows: 

- The feedback law for controlling the orbiter charge located at one of the collinear libration points was proposed. 

It is analytically proved that the time derivative of the energy of relative motion of the E-body at a positive sign of the 

control coefficient ( 0 ) is negative. This control law reduces the total energy of relative motion of the electrostatic 

body and leads the E-body to a steady rotation around the libration point over time. The analytical results and 

effectiveness of the proposed voltage control law (30) were confirmed by numerical simulations of E-body motion. 

- Numerical simulations have shown that if the E-body begins to move outside the Hill E-sphere with 27 m distance 

from the 
1
L  libration point, and, as a result of control of the voltage magnitude by the law (30), over time the E-body 

motion transitions to a nearly regular rotation at a distance no more than 5 m from the 
1
L  libration point with a relative 

velocity not exceeding 0.05 m/s. In this case, the voltage magnitude of the orbiter required for control did not exceed 

20 kV for the control coefficient 0.1 . 

In future studies on the capture of the E-body in the vicinity of the collinear libration point, other charge control 

laws will be proposed. A study will be carried out to determine the region of possible motions of the E-body near the 

E-Hill's sphere, for which the E-body capture can be realized using the proposed control law (30). In addition, the 

proposed approach may be useful as other planet-moon systems and for other collinear libration points. 
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