A splitting of collinear libration points in circular restricted three-body problem by an artificial electrostatic field

Vladimir S. Aslanov (D)

Received: 24 December 2020/Accepted: 16 January 2021
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract

This paper focuses on the study of a new type of a planar, circular restricted three-body problem with an attractive artificial electrostatic field (E-field) at collinear libration points. For instance, this attractive field can be generated by an orbiting spacecraft located at the Mars-Phobos L1 libration point and an electrostatic capsule launched from Phobos. The feasibility of the proposed retrieval system is discussed from the aspect of local space weather Debye length. The attractive E-field splits the collinear libration point into two new collinear points, and the greater the E-field potential and the Debye length the greater the distance between the new libration points and the "old" original libration point. The new equilibrium positions caused by the action of the E-field have been found, and an instability of these new libration points has been proven. A new Jacobi integral in analytical form is obtained and equations of motion are derived for the restricted problem of three bodies taking into account the E-field. A numerical simulation shows the impact of the E-field potential on capsule capture in the small vicinity of the MarsPhobos L1 libration point. This work expands the classic three-body problem filling with new content. The obtained results can be applied, for example, to

[^0]study an opportunity of delivering the Phobos samples 32
using Coulomb interaction of bodies in space. 33
Keywords Libration points • Electrostatic field • 34
Stability and instability • Exact solutions • Jacobi 35integral36
1 Introduction 37
The planar circular restricted three-body problem is a 38
classic celestial mechanics issue. Its study made a 39

great contribution to the theory of space dynamics and celestial mechanics. The restricted three-body problem is the basis for solving many applied tasks in astronautics, in particular, for calculating interplanetary flights and launching spacecraft and satellites. This problem and its various aspects received great attention from the scientific community. A detailed analysis of major studies on this topic can be found in the Szebehely's textbook [1]. The book discusses the regularization of the motion equations, manifold of the states of motion, equilibrium positions, motion near these positions, application of Hamiltonian dynamics methods to the restricted problem, its periodic orbits and quantitative aspects. A detailed numerical analysis of three-dimensional periodic halo orbits near collinear libration points in the restricted three-body problem was performed by Howell [2]. Analytical
solutions for Lissajous and halo orbits near collinear points L_{1}, L_{2} were obtained by Luo et al. in [3] using normalization method. These results were compared with the solutions obtained by Lindstedt-Poincare method. Numerical analysis of the planar circular restricted three-body problem phase space and orbits classification into three groups (bounded, escape and collisional) were performed by Zotos [4]. Halo, Lyapunov and vertical orbits for elliptic restricted three-body problem were studied based on resonant motions in the circular problem by Ferrari and Lavagna [5]. Woo and Misra [6] investigated the spacecraft motion in the vicinity of a binary asteroid system as the circular restricted case. The asteroids were considered as rigid bodies. Addition equilibrium points were found numerically for some special cases. Biggs and Negri [7] considered solar sail spacecraft controlled motion within the circular restricted threebody problem. The spacecraft moves in the gravitational field of the Earth and the Moon, taking into account the perturbation introduced by the solar pressure on the sail. Alessi and Sánchez [8] presented a semi-analytical approach, which is based on a perturbation procedure, for study the three-dimensional motion of a negligible mass body in the circular restricted three-body problem. At this point, it should be emphasized that the above references are not an exhaustive analysis of the literature on the considered topic, which is very broad and includes a huge number of works, but they give some insight into this problem. New engineering ideas require solutions of new fundamental problems. For example, in recent years, Martian sample return missions were actively discussed by scientists [9]. The missions assume that a sample capsule is launched from Mars surface using a Mars Ascent Vehicle after samples are collected by a rover [10]. As a solution to a deep-space docking challenge, the ability to use electrostatic force to capture the container was discussed in [9]. The idea of an electrostatic capture of the capsule can be used also in the case when an orbital spacecraft (orbiter) is located, in contrast to [9], at one of the collinear libration points.

If we talk about Mars, then it can be point L_{3}, and if about Mars's moon, Phobos, then points L_{1} and L_{2} are more suitable. The Phobos exploration is of independent importance. Phobos is a small, irregularly shaped moon ($\sim 26 \times 22.8 \times 18.1 \mathrm{~km}$) that orbits Mars every 7 h and 39 min . The orbit is synchronous to its
rotation so that its long axis is always directed toward Mars. The Mars-Phobos L_{1} libration point is unusually close to Phobos' surface ($\sim 3.4 \mathrm{~km}$), and it make the capsule delivery mission to a Phobos Sample Return orbiter technically feasible if the orbiter hovered in the Mars-Phobos L_{1} point. Several theoretical questions have to be answered in order to investigate a possibility of using the attractive artificial E-field at the collinear libration points L_{1}, L_{2} and L_{3}, for example, the Phobos sample capsule delivery mission.

The answers to these questions are covered in this article. This study focuses on equations and analytical formulas describing the new planar circular restricted three-body problem with the additional E-field. The goal is to understand the body's behavior in the E-field and the two gravitational fields caused by the main bodies near the collinear libration points. Note that when considering the E-field, the Debye length λ_{D} must be taken into account. The Debye length is an important parameter because the E-field rapidly decreases beyond this length by the Debye shielding effect. The motion equations are written in a rotating Cartesian coordinate system, which is converted to a canonical dimensionless form. We show the splitting of the "old" collinear liberation points L_{1}, L_{2}, L_{3}, and find new paired equilibrium positions ($L_{1+}, L_{1-} ; L_{2+}$, $L_{2-} ; L_{3+}, L_{3-}$) in the vicinity of the "old" points, and also prove the instability of these new equilibrium positions. Next, a new Jacobi integral is obtained in analytical form for the circular restricted three-body problem taking into account the E-field. And finally, using numerical modeling, we show the effect of the E-field potential on the capture of the electrostatic capsule (E-capsule) in the small vicinity of the MarsPhobos L_{1} libration point.

2 Equations of motion and Jacobi integral

In this section, we derive the planar motion equations of a body in two gravitational and one attractive Efield. The center of E-field is located at a single collinear libration point. These points are called the "old" collinear libration points because, as can be assumed (this will be proved below), due to the action of the E-field, the "old" unstable point splits into two new unstable equilibrium points. The action of the Efields is limited to the Debye length within tens of meters. In addition, the motion of a body is studied

	Journal : Medium 11071	Dispatch	29-1-2021	Pages: 10
	Article No.: 6226	\square LE		\square TYPESET
	MS Code : NODY-D-20-02999R1	$V_{\text {cP }}$		\checkmark DISK

only in a small vicinity of "old" points comparable to Debye length, beyond which the problem degenerates into the classic three-body problem. Therefore, we talk about two gravity fields and one attractive E-field, and the motion equations are written for the vicinity of each point: L_{1}, L_{2}, L_{3}. The equations of motion are derived using classical terminology of the three-body problem presented in book by Schaub and Junkins [11]. This will facilitate understanding of the presented material. Below this section is organized as follows. Firstly, the conventional assumptions for the circular restricted three-body problem are described. Next, the expression for Coulomb force acting on the charged body in the E-field is given. Then, the equations of the body motion are derived in canonical form. Finally, the non-dimensional potential function and the Jacobi integral are found.

The considered mechanical system consists of three bodies M_{1}, M_{2} and M (Fig. 1). It is assumed that the mass of the body M is many times less than the mass of the bodies M_{1} and M_{2}. Therefore, the body M has negligible effect on the other bodies. It is also supposed that the bodies M_{1} and M_{2} move in circular orbits around their mutual center of mass. Before proceeding with the construction of the relative motion equations, the electrostatic force is introduced. The orbiter is assumed to be located at one of the collinear libration points of $M_{1}-M_{2}$ bodies system and to have an electrostatic charge. The mass of the orbiter is not taken into account. The charged electrostatic capsule (E-capsule) is affected by an electrostatic force when moving in the vicinity of the orbiter. The capsule performance is dependent on this force. It is assumed that the capsule and the orbiter are perfectly

conducting spheres. The electrostatic force between the capsule and orbiter is defined by the equation
$F=k_{C} \frac{q_{o q}}{R^{2}}$
where $k_{C}=8.99 \cdot 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$ is the Coulomb constant, q_{O} is the charge on the orbiter, q is the charge on the capsule, R is the distance between the capsule and orbiter. Note that this force may be either attractive or repulsive depending on the polarity of the potentials of the E-capsule and orbiter. Consider only the attracting configuration $\left(q_{O} q<0\right)$ in this paper.

Let us first introduce into consideration three vectors in the Local-Vertical-Local-Horizontal frame $O x y$: the position vector of the body M (Fig. 1)
$\mathbf{r}=\left(r_{x}, r_{y}\right)$
the vector $\mathbf{a}=(a, 0)$ determines the position of the collinear libration points L_{1}, L_{2} and L_{3} in the frame Oxy
$a=\left(a_{1}, a_{2}, a_{3}\right), \quad a_{i}=\left|\overline{O L_{i}}\right|, i=1,2,3$
and, the position vector of the body M with respect to the collinear libration point (Fig. 1)
$\mathbf{R}=\mathbf{r}-\mathbf{a}=\left(X=r_{x}-a, Y=r_{y}\right)$
Then, the vector of the Coulomb force (1) is written as
$\mathbf{F}=k F \frac{\mathbf{R}}{R}=k \frac{k_{C} q_{O} q}{R^{3}} \mathbf{R}, \quad\left(q_{O} q<0\right)$
Note that the Coulomb force affects the body M, if this body is within the Debye length of a collinear libration point, i.e., within 10 s meters
$k=\left\{\begin{array}{l}1, \sqrt{\left(r_{x}-a\right)^{2}+r_{y}^{2}} \leq \lambda_{D} \\ 0, \sqrt{\left(r_{x}-a\right)^{2}+r_{y}^{2}}>\lambda_{D}\end{array}\right.$
Now, taking into account the Coulomb force (5), the equations of the E-capsule planar motion can be written the frame $O x y[11]$

$$
\begin{align*}
& \ddot{r}_{x}=\frac{\partial W}{\partial r_{x}}+\omega^{2} r_{x}+2 n \dot{r}_{y}+k \frac{k_{C} q_{O} q}{m} \frac{\left(r_{x}-a\right)}{R^{3}} \tag{7}\\
& \ddot{r}_{y}=\frac{\partial W}{\partial r_{y}}+\omega^{2} r_{y}-2 n \dot{r}_{x}+k \frac{k_{C} q_{O} q}{m} \frac{r_{y}}{R^{3}} \tag{8}
\end{align*}
$$

Fig. 1 The Local-Vertical-Local-Horizontal frame $O x y$

	Journal : Medium 11071 Article No. : 6226	Dispatch: 29-1-2021	Pages : 10
	\square LE	\square TYPESET	
	$\quad \mathrm{CP}$	DISK	

$W\left(r_{x}, r_{y}\right)=G\left(\frac{m_{1}}{\sqrt{\left(r_{x}+d \mu\right)^{2}+r_{y}^{2}}}+\frac{m_{2}}{\sqrt{\left(r_{x}-d(1-\mu)\right)^{2}+r_{y}^{2}}}\right)$
where
$\Phi=\frac{k_{C} q_{O} q}{m d^{3} \omega^{2}}<0$

Due to the definition of the mass ratio μ the nondimensional coordinates of M_{1} and M_{2} are written as.
$x_{1}=-\mu, \quad x_{2}=1-\mu$
This expression is simplified by entering a nondimensional relative distance ρ_{i} is defined as
$\rho_{i}=\sqrt{\left(x-x_{i}\right)^{2}+y^{2}}, \quad \rho=\sqrt{(x-\alpha)^{2}+y^{2}}$
Then, the corresponding non-dimensional potential function (15) is given by the expression
$U(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)+\frac{1-\mu}{\rho_{1}}+\frac{\mu}{\rho_{2}}-k \frac{\Phi}{R}$
Following similar steps as were done with the classic restricted three-body problem [11], with the Efield the non-dimensional Jacobi integral takes on the form

$$
\begin{align*}
J(x, y)= & \left(x^{2}+y^{2}\right)+\frac{2(1-\mu)}{\sqrt{(\mu+x)^{2}+y^{2}}} \\
& +\frac{2 \mu}{\sqrt{(-1+\mu+x)^{2}+y^{2}}} \tag{20}\\
& -2 k \frac{\Phi}{\sqrt{(x-\alpha)^{2}+y^{2}}}-\left(x^{\prime 2}+y^{\prime 2}\right)
\end{align*}
$$

For the dimensional equations of motion (13) and (14) the non-dimensional Jacobi integral is written as

$$
\begin{align*}
J(x, y)= & \left(x^{2}+y^{2}\right)+\frac{2(1-\mu)}{\rho_{1}}+\frac{2 \mu}{\rho_{2}}-2 k \frac{\Phi}{\rho}-\left(x^{\prime 2}\right. \\
& \left.+y^{\prime 2}\right) \tag{21}
\end{align*}
$$

3 New Lagrange collinear libration points

Setting the relative velocities and accelerations in Eqs. (13) and (14) equal to zero, we find conditions that are satisfied by the stationary points of the circular restricted three-body problem with the E-field. Obviously, the new stationary points can be located only within the Debye length of the "old" collinear libration points $L_{i}(i=1,2,3)$, i.e., within tens of meters. Outside this boundary, this task degenerates into the classic circular restricted three-body problem when, $k=0$ according to Eqs. (6), (13) and (14).

	Journal : Medium 11071	Dispatch: 29-1-2021	Pages : 10
	\square LE	\square TYPESET	
	MS Code : NODY-D-20-02999R1	$\boldsymbol{U}_{\mathrm{CP}}$	$\boldsymbol{D I S K}^{2}$

Therefore, we will look for new libration points only inside the Debye sphere is defined as

$$
\begin{equation*}
\sqrt{\left(r_{x}-a\right)^{2}+r_{y}^{2}} \leq \lambda_{D} \tag{22}
\end{equation*}
$$

or, taking into account (12)

$$
\begin{equation*}
\sqrt{(x-\alpha)^{2}+y^{2}} \leq \frac{\lambda_{D}}{d}=l_{D} \tag{23}
\end{equation*}
$$

To solve for the scalar coordinate x for the collinear libration points, Eq. (13) is set equal to zero for $y^{\prime}=y=0$, simplify to following [11]

$$
\begin{align*}
0= & x-\frac{\mu(-1+\mu+x)}{(-1+\mu+x)^{3}}-\frac{(1-\mu)(\mu+x)}{(\mu+x)^{3}} \\
& +k \frac{\Phi(x-\alpha)}{(x-\alpha)^{3}} \tag{24}
\end{align*}
$$

Let's rewrite Eq. (24) with regard to (17) as

$$
\begin{equation*}
0=x-\frac{\mu\left(x-x_{2}\right)}{\left(x-x_{2}\right)^{3}}-\frac{(1-\mu)\left(x-x_{1}\right)}{\left(x-x_{1}\right)^{3}}+k \frac{\Phi(x-\alpha)}{(x-\alpha)^{3}} \tag{25}
\end{equation*}
$$

Using the fact that the new libration points generated by the E-field must be located within the Debye sphere (23), we begin with the vicinity of the point L_{1} and find from Eq. (25) implicit conditions for the L_{1-} and L_{1+} position coordinates in terms of the mass ratio μ :

$$
\begin{equation*}
L_{1-}: 0=x-\frac{1-\mu}{(\mu+x)^{2}}+\frac{\mu}{(x-1+\mu)^{2}}-\frac{\Phi}{(x-\alpha)^{2}} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
L_{1+}: 0=x-\frac{1-\mu}{(\mu+x)^{2}}+\frac{\mu}{(x-1+\mu)^{2}}+\frac{\Phi}{(x-\alpha)^{2}} \tag{27}
\end{equation*}
$$

The last terms differentiate these equations from Eq. (10.93) in [11] and show the splitting of the point L_{1} into two new unstable collinear points L_{1-} and L_{1+}. Now consistently, in a similar way, we write down the implicit conditions for the collinear libration points in the vicinity of the "old" libration points L_{2} and L_{3} :

$$
\begin{equation*}
L_{2-}: 0=x-\frac{1-\mu}{(\mu+x)^{2}}-\frac{\mu}{(x-1+\mu)^{2}}-\frac{\Phi}{(x-\alpha)^{2}} \tag{28}
\end{equation*}
$$

$L_{2+}: 0=x-\frac{1-\mu}{(\mu+x)^{2}}-\frac{\mu}{(x-1+\mu)^{2}}+\frac{\Phi}{(x-\alpha)^{2}}$
and
$L_{3-}: 0=x+\frac{1-\mu}{(\mu+x)^{2}}+\frac{\mu}{(x-1+\mu)^{2}}+\frac{\Phi}{(x-\alpha)^{2}}$
$L_{3+}: 0=x+\frac{1-\mu}{(\mu+x)^{2}}+\frac{\mu}{(x-1+\mu)^{2}}-\frac{\Phi}{(x-\alpha)^{2}}$
308

The order of the location of the new libration points caused by the E-field is given in Fig. 2.

4 Libration points stability

To study the stability of the new equilibrium positions
313
($L_{1+}, L_{1-} L_{2+}, L_{2-} L_{3+}, L_{3-}$) caused by the E-field, we use a standard linearization procedure [12]. Firstly, the equations of relative motion are linearized in the small vicinity of the new equilibrium position. Then, the eigenvalues of the linearized plant matrix are determined. The conclusion about the equilibrium position stability is made on the basis of the real part of these eigenvalues. Let denote the position of the Lagrange point as $\left(x_{0}, y_{0}\right)$. The body M is located at the point with coordinates $\left(x_{0}+\xi, y_{0}+\eta\right)$. Calculating the body velocity components $\left(\xi^{\prime}, \eta^{\prime}\right)$, substituting these quantities into Eqs. (13), (14) and expanding result in a Taylor series gives
$\xi^{\prime \prime}-2 \eta^{\prime}=\left.\xi \frac{\partial^{2} U}{\partial x^{2}}\right|_{0}+\left.\eta \frac{\partial^{2} U}{\partial x \partial y}\right|_{0}+\cdots$
$\eta^{\prime \prime}+2 \xi^{\prime}=\left.\xi \frac{\partial^{2} U}{\partial x \partial y}\right|_{0}+\left.\eta \frac{\partial^{2} U}{\partial y^{2}}\right|_{0}+\cdots$
where the suffix zero means that after the partial If the displacements ξ and η are small, we may neglect terms involving squares, products and higher-degree terms in ξ and η, and so the equations become
$\xi^{\prime \prime}-2 \eta^{\prime}=\xi U_{x x}+\eta U_{x y}$
$\eta^{\prime \prime}+2 \xi^{\prime}=\xi U_{y x}+\eta U_{y y}$
where

	Journal : Medium 11071	Dispatch: 29-1-2021	Pages : 10
Article No. : 6226	\square LE	\square TYPESET $^{\text {MS Code : NODY-D-20-02999R1 }}$	$\boldsymbol{\nu}_{\mathrm{CP}}$

Fig. 2 Splitting the collinear libration points, when $\Phi=\frac{k_{c} q_{o} q}{m d^{3} \omega^{2}}=-9 \cdot 10^{-16}$

$$
\begin{gather*}
U_{x x}=\left.\frac{\partial^{2} U}{\partial x^{2}}\right|_{0}, \quad U_{y y}=\left.\frac{\partial^{2} U}{\partial y^{2}}\right|_{0}, \tag{36}\\
U_{x y}=U_{y x}=\left.\frac{\partial^{2} U}{\partial x \partial y}\right|_{0}=\left.\frac{\partial^{2} U}{\partial y \partial x}\right|_{0}
\end{gather*}
$$

and the U are constant since they are evaluated at the Lagrange point. These are linear differential equations with constant coefficients, the general solution of which may be written as

$$
\begin{equation*}
\xi=\sum_{i=1}^{4} \alpha_{i} \exp \left(\lambda_{i} t\right), \quad \eta=\sum_{i=1}^{4} \beta_{i} \exp \left(\lambda_{i} t\right) \tag{37}
\end{equation*}
$$

where α_{i} are integration constants, the constants β_{i}
dependent upon α_{i} and the constants appearing in the differential equations. The λ_{i} are the roots of the characteristic determinant of Eqs. (34) and (35) set
equal to zero and rewritten as

$$
\left|\begin{array}{cc}
\lambda^{2}-U_{x x} & -2 \lambda-U_{x y} \tag{38}\\
2 \lambda-U_{x y} & \lambda^{2}-U_{y y}
\end{array}\right|=0
$$

or
$\lambda^{4}+\left(4-U_{x x}-U_{y y}\right) \lambda^{2}+U_{x x} U_{y y}-U_{x y}^{2}=0$
The solution is stable when all λ_{i} obtained from Eq. (39) are pure imaginary numbers. Since, along with any root λ, the biquadratic characteristic equation also has a root $-\lambda$, then the solution is unstable when

	Journal : Medium 11071 Article No. : 6226	Dispatch: 29-1-2021	Pages : 10
	\square LE	\square TYPESET	
	$\quad \mathrm{CP}$	DISK	

$B=3\left(\frac{1-\mu}{\rho_{1}^{5}}+\frac{\mu}{\rho_{2}^{5}}\right)$
any of the λ_{i} are real or complex numbers with a nonzero real part. Now, defining the following quantities A, B, C, D and E as
$A=\frac{1-\mu}{\rho_{1}^{3}}+\frac{\mu}{\rho_{2}^{3}}$
$C=3\left(\frac{1-\mu}{\rho_{1}^{5}}\left(x_{0}+\mu\right)+\frac{\mu}{\rho_{2}^{5}}\left(x_{0}-(1-\mu)\right)\right)$
$D=k \frac{\Phi}{|\rho|^{3}}$
and
$E=k \frac{\Phi}{|\rho|^{5}}$
We find that

$$
\begin{align*}
U_{x x}= & 1-A+3(1-\mu) \frac{\left(x_{0}+\mu\right)^{2}}{\rho_{1}^{5}} \\
& +3 \mu \frac{\left(x_{0}-(1-\mu)\right)^{2}}{\rho_{2}^{5}}+D-3 E\left(\alpha-x_{0}\right)^{2} \tag{45}
\end{align*}
$$

$U_{y y}=1-A+B y_{0}^{2}+D-3 E y_{0}^{2}$
$U_{x y}=C y_{0}+3 E\left(\alpha-x_{0}\right) y_{0}$
In the straight line solution, $y_{0}=0$, so that
$\rho_{i}^{2}=\left(x_{0}-x_{i}\right)^{2}, \quad \rho^{2}=\left(x_{0}-\alpha\right)^{2}$
Hence
$U_{x x}=1+2 A-2 D, \quad U_{y y}=1-A+D, \quad U_{x y}=0$

Applying the values from (49) in Eq. (39) we obtain
$\lambda^{4}+\left(2-A^{\prime}\right) \lambda^{2}+\left(1+A^{\prime}-2 A^{\prime 2}\right)=0$
where
$A^{\prime}=A-D=\frac{1-\mu}{\rho_{1}^{3}}+\frac{\mu}{\rho_{2}^{3}}-k \frac{\Phi}{\rho^{3}}$
It can be shown that
$1+A^{\prime}-2 A^{\prime 2}<0$
for values of μ up to its limit of $\frac{1}{2}$. Hence, the four roots of equation (50) consist of two real roots, numerically equal but opposite in sign, and two conjugate pure imaginary roots. Hence the solution is unstable. Obviously, condition (52) with quadratic dependence on the left side is satisfied for any A^{\prime} greater than unity
$A^{\prime}=A-D>1$
Let us demonstrate that all the new equilibrium positions ($L_{1+}, L_{1-} L_{2+}, L_{2-} L_{3+}, L_{3-}$) satisfy this condition. Consider the first two of these points L_{1+}, L_{1-} located within the Debye sphere with respect to the point L_{1}. Since these points are located between M_{1} and M_{2}, then $\rho_{1}, \rho_{2}<1$ and therefore
$A=\frac{1-\mu}{\rho_{1}^{3}}+\frac{\mu}{\rho_{2}^{3}}>1-\mu+\mu=1$
Now consider the parameter D, which in consequence of (43) and (1) within the Debye sphere is always negative:
$D=k \frac{\Phi}{|\rho|^{3}}<0$
Thus, the condition (53) is satisfied for the equilibrium positions L_{1+}, L_{1-}, and hence the condition (52) is also satisfied, hence the equilibrium positions L_{1+}, L_{1-} are unstable.

We now investigate the stability at the other collinear equilibrium positions L_{2+}, L_{2-}, L_{3+} and L_{3-}, found from the four equations (28)-(31). Below we prove that at these points $A^{\prime}>1$ as well. For this purpose equation (25) can be rewritten as

$$
\begin{align*}
0= & x\left(1-\frac{1-\mu}{\rho_{1}^{3}}-\frac{\mu}{\rho_{2}^{3}}\right)+\frac{(1-\mu)}{\rho_{1}^{3}} x_{1}+\frac{\mu}{\rho_{2}^{3}} x_{2} \\
& +k \frac{\Phi(x-\alpha)}{(x-\alpha)^{3}} \tag{56}
\end{align*}
$$

Considering that $x_{1}=-\mu, x_{2}=1-\mu$, get

$$
\begin{align*}
x\left(\frac{1-\mu}{\rho_{1}^{3}}+\frac{\mu}{\rho_{2}^{3}}-1\right)= & \mu(1-\mu)\left(\frac{1}{\rho_{2}^{3}}-\frac{1}{\rho_{1}^{3}}\right) \\
& +k \frac{\Phi(x-\alpha)}{(x-\alpha)^{3}} \tag{57}
\end{align*}
$$

comparing this expression with Eqs. (40), (43) and (53) write it as

| | Journal : Medium 11071 | Dispatch: 29-1-2021 | Pages : 10 |
| :--- | :--- | :--- | :--- | :--- |
| Article No. : 6226 | \square LE | \square TYPESET | |
| MS Code : NODY-D-20-02999R1 | $\square \mathrm{CP}$ | \square DISK | |

$$
\begin{align*}
A^{\prime}-1 & =\frac{1-\mu}{\rho_{1}^{3}}+\frac{\mu}{\rho_{2}^{3}}-1-k \frac{\Phi}{|\rho|^{3}} \\
& =\frac{\mu(1-\mu)}{x}\left(\frac{1}{\rho_{2}^{3}}-\frac{1}{\rho_{1}^{3}}\right)-k \frac{\Phi}{|\rho|^{3}}+k \frac{\Phi(x-\alpha)}{x(x-\alpha)^{3}} \tag{58}
\end{align*}
$$

Note that at the points L_{2+} and L_{2-}, the conditions $x>0$ and $\rho_{2}<\rho_{1}$ are satisfied, and at the points L_{3+} and L_{3-}, the conditions $x<0$ and $\rho_{2}>\rho_{1}$. Besides

$$
\begin{equation*}
-k \frac{\Phi}{|\rho|^{3}}+k \frac{\Phi(x-\alpha)}{x(x-\alpha)^{3}}>0 \tag{59}
\end{equation*}
$$

since $\Phi<0$ and x always many orders of magnitude greater than ρ, which does not exceed the relative Debye length (23). Therefore, in these considered cases we get
$A^{\prime}>1$
It follows that condition (52) is also satisfied. Thus, we have proved that the all new collinear equilibrium points ($L_{1+}, L_{1-} L_{2+}, L_{2-} L_{3+}, L_{3-}$) are unstable.

5 Numerical simulation

This section shows the effect of the electrostatic charge level on the capture of the E-capsule in the vicinity of the Mars-Fobos libration point L_{1}, in which the orbiter together with the E-capsule generates the attracting E-field. Note that the Debye length near the L_{1} point is unknown; approximate Debye length values are given for the Stickney crater, located on Phobos' surface directly under the L_{1} point. Depending on Mars local time, this parameter ranges from 13 to 47 m [14]. In the absence of accurate data, all calculations are performed for $\lambda_{D}=45 \mathrm{~m}$. Since we study the motion of the capsule relative to the orbiter, which is in the L_{1} point, it makes sense to pass from the frame $O x y$ to the frame $L_{1} X Y$ (Fig. 3) by changing the variable
$x=X+a_{1}, y=Y$
where a_{1} is abscissa of the Mars-Phobos L1 point
Then taking into account (61), the motion equations
(7) and (8) can be rewritten as
$\ddot{X}=\frac{\partial W_{E}}{\partial X}+\omega^{2}\left(X+a_{1}\right)+2 \omega \dot{Y}$
$\ddot{Y}=\frac{\partial W_{E}}{\partial Y}+\omega^{2} Y-2 \omega \dot{X}$
where the effective potential is written as

$$
\begin{aligned}
W_{E}(X, Y)= & G\left(\frac{m_{1}}{\sqrt{\left(X+a_{1}+d \mu\right)^{2}+Y^{2}}}\right. \\
& \left.+\frac{m_{2}}{\sqrt{\left(X+a_{1}-d(1-\mu)\right)^{2}+Y^{2}}}\right) \\
& -k \frac{P}{m \sqrt{X^{2}+Y^{2}}}
\end{aligned}
$$

where $P=k_{C} q_{o} q<0$ is the charge level.
All trajectories of the capsule $m=10 \mathrm{~kg}$ begin with the same initial conditions in the vicinity of point L_{1} from the side of Phobos in the frame $L_{1} X Y$
$X_{0}=81.533 \mathrm{~m}, \quad Y_{0}=10.829 \mathrm{~m}$,

$$
\begin{equation*}
\dot{X}_{0}=-0.043 \mathrm{~m} / \mathrm{s}, \quad \dot{Y}_{0}=-0.017 \mathrm{~m} / \mathrm{s} \tag{65}
\end{equation*}
$$

Figure 3 demonstrates the E-capsule trajectories for different charge levels:
$P=k_{C} q_{o} q=0,-0.28,-0.32,-0.40\left[\mathrm{~N} \cdot \mathrm{~m}^{2}\right]$
In the first case the E-field is absent, therefore, the capsule does not reach the vicinity of the point L_{1}, the same thing we can see when the charge level is not high enough ($P=-0.28 \mathrm{~N} \cdot \mathrm{~m}^{2}$). If the charge level is equal $\quad P=-0.32 \mathrm{~N} \cdot \mathrm{~m}^{2}$ and more ($P=-0.40 \mathrm{~N} \cdot \mathrm{~m}^{2}$), there are several turns of the capsule around the point L_{1}, and the greater the charge level, the more turns the E-capsule performs around the point L_{1}.

6 Conclusion

This paper shows within the framework of the planar circular restricted three-body problem that the artificial attractive E-field at one of the collinear libration points causes the splitting of this point into two other unstable collinear libration points located within the Debye length. This fact was proved analytically, using

$$
P=-0.32 \mathrm{~N} \cdot \mathrm{~m}^{2}
$$

$$
P=-0.40 \mathrm{~N} \cdot \mathrm{~m}^{2}
$$

Fig. 3 The capsule trajectories and Contour plot of the effective potential $W_{E}(X, Y)$ in the frame $L_{1} X Y$

481 the corresponding analytic equations, the new Jacobi 482 integral, and confirmed by the numerical simulation. mission the E-capsule in a small vicinity of the MarsFobos libration point L_{1}.

Acknowledgements This study was supported by the Russian Science Foundation (Project No. 19-19-00085).

Compliance with ethical standards
Conflict of interest The author declares that he has no conflict of interest.

References

1. Szebehely, V.: The Restricted Problem of Three Bodies. Academic Press Inc., New York (1967)

	Journal : Medium 11071	Dispatch : 29-1-2021	Pages : 10
	Article No. : 6226	\square LE	\square TYPESET
	MS Code : NODY-D-20-02999R1	\checkmark_{CP}	DISK

2. Connor Howell, K.: Three-dimensional, periodic, 'halo’ orbits. Celestial Mech. 32, 53-71 (1984). https://doi.org/10. 1007/BF01358403
3. Luo, T., Pucacco, G., Xu, M.: Lissajous and halo orbits in the restricted three-body problem by normalization method. Nonlinear Dyn. 101, 2629-2644 (2020). https://doi.org/10. 1007/s11071-020-05875-1
4. Zotos, E.E.: Classifying orbits in the restricted three-body problem. Nonlinear Dyn. 82, 1233-1250 (2015). https://doi. org/10.1007/s11071-015-2229-4
5. Ferrari, F., Lavagna, M.: Periodic motion around libration points in the elliptic restricted three-body problem. Nonlinear Dyn. 93, 453-462 (2018). https://doi.org/10.1007/ s11071-018-4203-4
6. Woo, P., Misra, A.K.: Equilibrium points in the full threebody problem. Acta Astronaut. 99, 158-165 (2014). https:// doi.org/10.1016/j.actaastro.2014.02.019
7. Biggs, J.D., Negri, A.: Orbit-attitude control in a circular restricted three-body problem using distributed reflectivity devices. J. Guid. Control Dyn. 42(12), 2712-2721 (2019). https://doi.org/10.2514/1.G004493
8. Alessi, E.M., Sánchez, J.P.: Semi-analytical approach for distant encounters in the spatial circular restricted threebody problem. J. Guid. Control Dyn. 39(2), 351-359 (2016). https://doi.org/10.2514/1.G001237
9. Shibata, T., Bennett, T., Schaub, H.: Prospects of a hybrid magnetic/electrostatic sample container retriever. J. Spacecraft Rockets 57(3), 434-445 (2020). https://doi.org/10. 2514/1.A34509
10. Dankanich, J., Klein, E.: Mars ascent vehicle development status, IEEE Aerospace Conference, Big Sky. USA (2012). https://doi.org/10.1190/AERO.2012.6187295

520
521
522
523
11. Schaub, H., Junkins, J.: Analytical Mechanics of Space 527 Systems, AIAA EducationSeries, 2nd edn. Reston, VA 528 (2009)

529
12. Roy, A.E.: Orbital motion. IoP, Bristol and Philadelphia 530 (2005)

531
13. Hartzell, C.M., Farrell, W., Marshall, J.: Shaking as means 532 to detach adhered regolith for manned Phobos exploration. 533 Adv. Space Res. 62(8), 2213-2219 (2018). https://doi.org/ 534 10.1016/j.asr.2017.09.010

535
14. Martynov, M.B., et al.: Planetary protection principles used 536 for Phobos-Grunt mission. Sol. Syst. Res. 45-7, 593-596 537 (2011). https://doi.org/10.1134/S0038094611070185 538

Publisher's Note Springer Nature remains neutral with 540 regard to jurisdictional claims in published maps and institutional affiliations.

	Journal : Medium 11071	Dispatch: 29-1-2021	Pages: 10
Article No. : 6226	\square LE	\square TYPESET	
MS Code : NODY-D-20-02999R1	$\boldsymbol{V}_{\mathrm{CP}}$	\checkmark DISK	

[^0]: A1 V. S. Aslanov (\triangle)
 A2 Samara National Research University, 34, Moscovskoe
 A3 shosse, Samara, Russia 443086
 A4 e-mail: aslanov_vs@mail.ru
 A5 URL: http://aslanov.ssau.ru/

