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7 Abstract This paper focuses on the study of a new

8 type of a planar, circular restricted three-body problem

9 with an attractive artificial electrostatic field (E-field)

10 at collinear libration points. For instance, this attrac-

11 tive field can be generated by an orbiting spacecraft

12 located at the Mars-Phobos L1 libration point and an

13 electrostatic capsule launched from Phobos. The

14 feasibility of the proposed retrieval system is dis-

15 cussed from the aspect of local space weather Debye

16 length. The attractive E-field splits the collinear

17 libration point into two new collinear points, and the

18 greater the E-field potential and the Debye length the

19 greater the distance between the new libration points

20 and the ‘‘old’’ original libration point. The new

21 equilibrium positions caused by the action of the

22 E-field have been found, and an instability of these

23 new libration points has been proven. A new Jacobi

24 integral in analytical form is obtained and equations of

25 motion are derived for the restricted problem of three

26 bodies taking into account the E-field. A numerical

27 simulation shows the impact of the E-field potential on

28 capsule capture in the small vicinity of the Mars-

29 Phobos L1 libration point. This work expands the

30 classic three-body problem filling with new content.

31 The obtained results can be applied, for example, to

32study an opportunity of delivering the Phobos samples

33using Coulomb interaction of bodies in space.

34Keywords Libration points � Electrostatic field �
35Stability and instability � Exact solutions � Jacobi
36integral

371 Introduction

38The planar circular restricted three-body problem is a

39classic celestial mechanics issue. Its study made a

40great contribution to the theory of space dynamics and

41celestial mechanics. The restricted three-body prob-

42lem is the basis for solving many applied tasks in

43astronautics, in particular, for calculating interplane-

44tary flights and launching spacecraft and satellites.

45This problem and its various aspects received great

46attention from the scientific community. A detailed

47analysis of major studies on this topic can be found in

48the Szebehely’s textbook [1]. The book discusses the

49regularization of the motion equations, manifold of the

50states of motion, equilibrium positions, motion near

51these positions, application of Hamiltonian dynamics

52methods to the restricted problem, its periodic orbits

53and quantitative aspects. A detailed numerical analysis

54of three-dimensional periodic halo orbits near colli-

55near libration points in the restricted three-body

56problem was performed by Howell [2]. Analytical
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57 solutions for Lissajous and halo orbits near collinear

58 points L1, L2 were obtained by Luo et al. in [3] using

59 normalization method. These results were compared

60 with the solutions obtained by Lindstedt–Poincare

61 method. Numerical analysis of the planar circular

62 restricted three-body problem phase space and orbits

63 classification into three groups (bounded, escape and

64 collisional) were performed by Zotos [4]. Halo,

65 Lyapunov and vertical orbits for elliptic restricted

66 three-body problem were studied based on resonant

67 motions in the circular problem by Ferrari and

68 Lavagna [5]. Woo and Misra [6] investigated the

69 spacecraft motion in the vicinity of a binary asteroid

70 system as the circular restricted case. The asteroids

71 were considered as rigid bodies. Addition equilibrium

72 points were found numerically for some special cases.

73 Biggs and Negri [7] considered solar sail spacecraft

74 controlled motion within the circular restricted three-

75 body problem. The spacecraft moves in the gravita-

76 tional field of the Earth and the Moon, taking into

77 account the perturbation introduced by the solar

78 pressure on the sail. Alessi and Sánchez [8] presented

79 a semi-analytical approach, which is based on a

80 perturbation procedure, for study the three-dimen-

81 sional motion of a negligible mass body in the circular

82 restricted three-body problem. At this point, it should

83 be emphasized that the above references are not an

84 exhaustive analysis of the literature on the considered

85 topic, which is very broad and includes a huge number

86 of works, but they give some insight into this problem.

87 New engineering ideas require solutions of new

88 fundamental problems. For example, in recent years,

89 Martian sample return missions were actively dis-

90 cussed by scientists [9]. The missions assume that a

91 sample capsule is launched from Mars surface using a

92 Mars Ascent Vehicle after samples are collected by a

93 rover [10]. As a solution to a deep-space docking

94 challenge, the ability to use electrostatic force to

95 capture the container was discussed in [9]. The idea of

96 an electrostatic capture of the capsule can be used also

97 in the case when an orbital spacecraft (orbiter) is

98 located, in contrast to [9], at one of the collinear

99 libration points.

100 If we talk about Mars, then it can be point L3, and if

101 about Mars’s moon, Phobos, then points L1 and L2 are

102 more suitable. The Phobos exploration is of indepen-

103 dent importance. Phobos is a small, irregularly shaped

104 moon (* 26 9 22.8 9 18.1 km) that orbits Mars

105 every 7 h and 39 min. The orbit is synchronous to its

106rotation so that its long axis is always directed toward

107Mars. The Mars-Phobos L1 libration point is unusually

108close to Phobos’ surface (* 3.4 km), and it make the

109capsule delivery mission to a Phobos Sample Return

110orbiter technically feasible if the orbiter hovered in the

111Mars-Phobos L1 point. Several theoretical questions

112have to be answered in order to investigate a

113possibility of using the attractive artificial E-field at

114the collinear libration points L1, L2 and L3, for

115example, the Phobos sample capsule delivery mission.

116The answers to these questions are covered in this

117article. This study focuses on equations and analytical

118formulas describing the new planar circular restricted

119three-body problem with the additional E-field. The

120goal is to understand the body’s behavior in the E-field

121and the two gravitational fields caused by the main

122bodies near the collinear libration points. Note that

123when considering the E-field, the Debye length kD
124must be taken into account. The Debye length is an

125important parameter because the E-field rapidly

126decreases beyond this length by the Debye shielding

127effect. The motion equations are written in a rotating

128Cartesian coordinate system, which is converted to a

129canonical dimensionless form. We show the splitting

130of the ‘‘old’’ collinear liberation points L1, L2, L3, and

131find new paired equilibrium positions (L1þ; L1�; L2þ;
132L2�; L3þ; L3�) in the vicinity of the ‘‘old’’ points, and
133also prove the instability of these new equilibrium

134positions. Next, a new Jacobi integral is obtained in

135analytical form for the circular restricted three-body

136problem taking into account the E-field. And finally,

137using numerical modeling, we show the effect of the

138E-field potential on the capture of the electrostatic

139capsule (E-capsule) in the small vicinity of the Mars-

140Phobos L1 libration point.

1412 Equations of motion and Jacobi integral

142In this section, we derive the planar motion equations

143of a body in two gravitational and one attractive E-

144field. The center of E-field is located at a single

145collinear libration point. These points are called the

146‘‘old’’ collinear libration points because, as can be

147assumed (this will be proved below), due to the action

148of the E-field, the ‘‘old’’ unstable point splits into two

149new unstable equilibrium points. The action of the E-

150fields is limited to the Debye length within tens of

151meters. In addition, the motion of a body is studied
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152 only in a small vicinity of ‘‘old’’ points comparable to

153 Debye length, beyond which the problem degenerates

154 into the classic three-body problem. Therefore, we talk

155 about two gravity fields and one attractive E-field, and

156 the motion equations are written for the vicinity of

157 each point:L1, L2, L3. The equations of motion are

158 derived using classical terminology of the three-body

159 problem presented in book by Schaub and Junkins

160 [11]. This will facilitate understanding of the pre-

161 sented material. Below this section is organized as

162 follows. Firstly, the conventional assumptions for the

163 circular restricted three-body problem are described.

164 Next, the expression for Coulomb force acting on the

165 charged body in the E-field is given. Then, the

166 equations of the body motion are derived in canonical

167 form. Finally, the non-dimensional potential function

168 and the Jacobi integral are found.

169 The considered mechanical system consists of three

170 bodies M1, M2 and M(Fig. 1). It is assumed that the

171 mass of the bodyM is many times less than the mass of

172 the bodies M1 and M2. Therefore, the body M has

173 negligible effect on the other bodies. It is also

174 supposed that the bodies M1 and M2 move in circular

175 orbits around their mutual center of mass. Before

176 proceeding with the construction of the relative

177 motion equations, the electrostatic force is introduced.

178 The orbiter is assumed to be located at one of the

179 collinear libration points ofM1-M2 bodies system and

180 to have an electrostatic charge. The mass of the orbiter

181 is not taken into account. The charged electrostatic

182 capsule (E-capsule) is affected by an electrostatic

183 force when moving in the vicinity of the orbiter. The

184 capsule performance is dependent on this force. It is

185 assumed that the capsule and the orbiter are perfectly

186conducting spheres. The electrostatic force between

187the capsule and orbiter is defined by the equation

F ¼ kC
qOq

R2
ð1Þ

189189where kC ¼ 8:99 � 109Nm2=C2 is the Coulomb con-

190stant, qO is the charge on the orbiter, q is the charge on

191the capsule, R is the distance between the capsule and

192orbiter. Note that this force may be either attractive or

193repulsive depending on the polarity of the potentials of

194the E-capsule and orbiter. Consider only the attracting

195configuration ðqOq\0Þ in this paper.

196Let us first introduce into consideration three

197vectors in the Local-Vertical-Local-Horizontal frame

198Oxy: the position vector of the body M (Fig. 1)

r ¼ ðrx; ryÞ ð2Þ

200200the vector a ¼ ða; 0Þ determines the position of the

201collinear libration points L1, L2 and L3 in the frame

202Oxy

a ¼ ða1; a2; a3Þ; ai ¼ OLi
�

�

�

�; i ¼ 1; 2; 3 ð3Þ

204204and, the position vector of the bodyM with respect

205to the collinear libration point (Fig. 1)

R ¼ r� a ¼ ðX ¼ rx � a; Y ¼ ryÞ ð4Þ

207207Then, the vector of the Coulomb force (1) is written

208as

F ¼ kF
R

R
¼ k

kCqOq

R3
R; ðqOq\0Þ ð5Þ

210210Note that the Coulomb force affects the body M, if

211this body is within the Debye length of a collinear

212libration point, i.e., within 10 s meters

k ¼
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrx � aÞ2 þ r2y

q

� kD

0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrx � aÞ2 þ r2y

q

[ kD

8

>

<

>

:

ð6Þ

214214Now, taking into account the Coulomb force (5),

215the equations of the E-capsule planar motion can be

216written the frame Oxy[11]

€rx ¼
oW

orx
þ x2rx þ 2n _ry þ k

kCqOq

m

ðrx � aÞ
R3

ð7Þ

218218
€ry ¼

oW

ory
þ x2ry � 2n _rx þ k

kCqOq

m

ry

R3
ð8Þ

220220

Fig.1 The Local-Vertical-Local-Horizontal frame Oxy
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W rx; ry
� �

¼ G
m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrx þ dlÞ2 þ r2y

q þ m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrx � dð1� lÞÞ2 þ r2y

q

0

B

@

1

C

A

ð9Þ

222222 where l ¼ m2

m1þm2
; x is a constant angular velocity

223 magnitude of the M1–M2 system; d is the distance

224 between M1 and M2; m, m1 and m2 are masses of the

225 bodies M, M1 and M2, respectively.

226 The motion equations (7) and (8) can be written in a

227 convenient non-dimensional form. To do so, we

228 introduce the non-dimensional time variable t as

s ¼ xt ð10Þ

230230 Time derivatives with respect to this new time

231 variable are denoted as

ð:Þ0 ¼ d

ds
ð:Þ ð11Þ

233233 Any scalar distances are non-dimensionalized by

234 dividing them with the constant relative between M1

235 and M2 as

x ¼ rx

d
; y ¼ ry

d
ð12Þ

237237 Using the variables substitutions (10) and (12), we

238 now are able to rewrite Eqs. (7) and (8) into the

239 following non-dimensional form:

x00 � 2y0 ¼ oU

ox
ð13Þ

241241
y00 þ 2x0 ¼ oU

oy
ð14Þ

243243 where a ¼ a
d
\1. The corresponding non-dimensional

244 potential function Uðx; yÞ is given by the expression

Uðx; yÞ ¼ 1

2
ðx2 þ y2Þ þ 1� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ xÞ2 þ y2
q

þ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�1þ lþ xÞ2 þ y2
q

� k
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� aÞ2 þ y2
q ð15Þ

246246 where

U ¼ kCqOq

md3x2
\0 ð16Þ

248248Due to the definition of the mass ratio l the non-

249dimensional coordinates of M1 and M2 are written as.

x1 ¼ �l; x2 ¼ 1� l ð17Þ

251251This expression is simplified by entering a non-

252dimensional relative distance qi is defined as

qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� xiÞ2 þ y2
q

; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� aÞ2 þ y2
q

ð18Þ

254254Then, the corresponding non-dimensional potential

255function (15) is given by the expression

Uðx; yÞ ¼ 1

2
ðx2 þ y2Þ þ 1� l

q1
þ l

q2
� k

U

R
ð19Þ

257257Following similar steps as were done with the

258classic restricted three-body problem [11], with the E-

259field the non-dimensional Jacobi integral takes on the

260form

Jðx; yÞ ¼ ðx2 þ y2Þ þ 2ð1� lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlþ xÞ2 þ y2
q

þ 2l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�1þ lþ xÞ2 þ y2
q

� 2k
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� aÞ2 þ y2
q � ðx02 þ y02Þ ð20Þ

262262For the dimensional equations of motion (13) and

263(14) the non-dimensional Jacobi integral is written as

Jðx; yÞ ¼ ðx2 þ y2Þ þ 2ð1� lÞ
q1

þ 2l

q2
� 2k

U

q
� ðx02

þ y02Þ
ð21Þ

265265

2663 New Lagrange collinear libration points

267Setting the relative velocities and accelerations in

268Eqs. (13) and (14) equal to zero, we find conditions

269that are satisfied by the stationary points of the circular

270restricted three-body problem with the E-field. Obvi-

271ously, the new stationary points can be located only

272within the Debye length of the ‘‘old’’ collinear

273libration points Li (i ¼ 1; 2; 3), i.e., within tens of

274meters. Outside this boundary, this task degenerates

275into the classic circular restricted three-body problem

276when, k ¼ 0 according to Eqs. (6), (13) and (14).
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277 Therefore, we will look for new libration points only

278 inside the Debye sphere is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrx � aÞ2 þ r2y

q

� kD ð22Þ

280280 or, taking into account (12)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� aÞ2 þ y2
q

� kD

d
¼ lD ð23Þ

282282 To solve for the scalar coordinate x for the collinear

283 libration points, Eq. (13) is set equal to zero for

284 y0 ¼ y ¼ 0, simplify to following [11]

0 ¼ x� lð�1þ lþ xÞ
ð�1þ lþ xÞ3

� ð1� lÞðlþ xÞ
ðlþ xÞ3

þ k
Uðx� aÞ
ðx� aÞ3

ð24Þ

286286 Let’s rewrite Eq. (24) with regard to (17) as

0 ¼ x� lðx� x2Þ
ðx� x2Þ3

� ð1� lÞðx� x1Þ
ðx� x1Þ3

þ k
Uðx� aÞ
ðx� aÞ3

ð25Þ

288288 Using the fact that the new libration points gener-

289 ated by the E-field must be located within the Debye

290 sphere (23), we begin with the vicinity of the point L1
291 and find from Eq. (25) implicit conditions for the L1�
292 and L1þ position coordinates in terms of the mass ratio

293 l:

L1� : 0 ¼ x� 1� l

ðlþ xÞ2
þ l

ðx� 1þ lÞ2
� U

ðx� aÞ2

ð26Þ

295295
L1þ : 0 ¼ x� 1� l

ðlþ xÞ2
þ l

ðx� 1þ lÞ2
þ U

ðx� aÞ2

ð27Þ

297297 The last terms differentiate these equations from

298 Eq. (10.93) in [11] and show the splitting of the point

299 L1 into two new unstable collinear points L1� and L1þ.
300 Now consistently, in a similar way, we write down the

301 implicit conditions for the collinear libration points in

302 the vicinity of the ‘‘old’’ libration points L2 and L3:

L2� : 0 ¼ x� 1� l

ðlþ xÞ2
� l

ðx� 1þ lÞ2
� U

ðx� aÞ2

ð28Þ

304304

L2þ : 0 ¼ x� 1� l

ðlþ xÞ2
� l

ðx� 1þ lÞ2
þ U

ðx� aÞ2

ð29Þ

306306and

L3� : 0 ¼ xþ 1� l

ðlþ xÞ2
þ l

ðx� 1þ lÞ2
þ U

ðx� aÞ2

ð30Þ

308308
L3þ : 0 ¼ xþ 1� l

ðlþ xÞ2
þ l

ðx� 1þ lÞ2
� U

ðx� aÞ2

ð31Þ

310310The order of the location of the new libration points

311caused by the E-field is given in Fig. 2.

3124 Libration points stability

313To study the stability of the new equilibrium positions

314(L1þ ; L1� L2þ ; L2� L3þ ; L3�) caused by the E-field,

315we use a standard linearization procedure [12]. Firstly,

316the equations of relative motion are linearized in the

317small vicinity of the new equilibrium position. Then,

318the eigenvalues of the linearized plant matrix are

319determined. The conclusion about the equilibrium

320position stability is made on the basis of the real part of

321these eigenvalues. Let denote the position of the

322Lagrange point as (x0; y0). The bodyM is located at the

323point with coordinates (x0 þ n; y0 þ g). Calculating

324the body velocity components (n0; g0), substituting

325these quantities into Eqs. (13), (14) and expanding

326result in a Taylor series gives
327

n00 � 2g0 ¼ n
o
2U

ox2

�

�

�

�

0

þg
o
2U

oxoy

�

�

�

�

0

þ � � � ð32Þ

329329

g00 þ 2n0 ¼ n
o
2U

oxoy

�

�

�

�

0

þg
o
2U

oy2

�

�

�

�

0

þ � � � ð33Þ

331331where the suffix zero means that after the partial If the

332displacements n and g are small, we may neglect terms

333involving squares, products and higher-degree terms

334in n and g, and so the equations become
335

n00 � 2g0 ¼ nUxx þ gUxy ð34Þ

337337g00 þ 2n0 ¼ nUyx þ gUyy ð35Þ

339339where
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Uxx ¼
o
2U

ox2

�

�

�

�

0

; Uyy ¼
o
2U

oy2

�

�

�

�

0

;

Uxy ¼ Uyx ¼
o
2U

oxoy

�

�

�

�

0

¼ o
2U

oyox

�

�

�

�

0

ð36Þ

341341 and the U are constant since they are evaluated at the

342 Lagrange point. These are linear differential equations

343 with constant coefficients, the general solution of

344 which may be written as

n ¼
X

4

i¼1

ai expðkitÞ; g ¼
X

4

i¼1

bi expðkitÞ ð37Þ

346346 where ai are integration constants, the constants bi

347dependent upon ai and the constants appearing in the

348differential equations. The ki are the roots of the

349characteristic determinant of Eqs. (34) and (35) set

350equal to zero and rewritten as

k2 � Uxx �2k� Uxy

2k� Uxy k2 � Uyy

�

�

�

�

�

�

�

�

¼ 0 ð38Þ

352352or

k4 þ ð4� Uxx � UyyÞk2 þ UxxUyy � U2
xy ¼ 0 ð39Þ

354354The solution is stable when all ki obtained from

355Eq. (39) are pure imaginary numbers. Since, along

356with any root k, the biquadratic characteristic equation

357also has a root �k, then the solution is unstable when

Fig. 2 Splitting the collinear libration points, when U ¼ kCqOq

md3x2 ¼ �9 � 10�16
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358 any of the ki are real or complex numbers with a

359 nonzero real part. Now, defining the following quan-

360 tities A, B, C, D and E as

A ¼ 1� l

q31
þ l

q32
ð40Þ

362362
B ¼ 3ð1� l

q51
þ l

q52
Þ ð41Þ

364364
C ¼ 3ð1� l

q51
ðx0 þ lÞ þ l

q52
ðx0 � ð1� lÞÞÞ ð42Þ

366366
D ¼ k

U

qj j3
ð43Þ

368368 and

E ¼ k
U

qj j5
ð44Þ

370370 We find that

Uxx ¼ 1� Aþ 3ð1� lÞ ðx0 þ lÞ2

q51

þ 3l
ðx0 � ð1� lÞÞ2

q52
þ D� 3Eða� x0Þ2

ð45Þ

372372 Uyy ¼ 1� Aþ By20 þ D� 3Ey20 ð46Þ

374374 Uxy ¼ Cy0 þ 3Eða� x0Þy0 ð47Þ

376376 In the straight line solution, y0 ¼ 0, so that

q2i ¼ ðx0 � xiÞ2; q2 ¼ ðx0 � aÞ2 ð48Þ

378378 Hence

Uxx ¼ 1þ 2A� 2D; Uyy ¼ 1� Aþ D; Uxy ¼ 0

ð49Þ

380380 Applying the values from (49) in Eq. (39) we obtain

k4 þ ð2� A0Þk2 þ ð1þ A0 � 2A02Þ ¼ 0 ð50Þ

382382 where

A0 ¼ A� D ¼ 1� l

q31
þ l

q32
� k

U

q3
ð51Þ

384384 It can be shown that

1þ A0 � 2A02
\0 ð52Þ

386386for values of l up to its limit of 1
2
. Hence, the four roots

387of equation (50) consist of two real roots, numerically

388equal but opposite in sign, and two conjugate pure

389imaginary roots. Hence the solution is unstable.

390Obviously, condition (52) with quadratic dependence

391on the left side is satisfied for any A0 greater than unity

A0 ¼ A� D[ 1 ð53Þ

393393Let us demonstrate that all the new equilibrium

394positions (L1þ ; L1� L2þ ;L2� L3þ ; L3�) satisfy this

395condition. Consider the first two of these points

396L1þ ; L1� located within the Debye sphere with respect

397to the point L1. Since these points are located between

398M1 and M2, then q1; q2\1 and therefore

A ¼ 1� l

q31
þ l

q32
[ 1� lþ l ¼ 1 ð54Þ

400400Now consider the parameter D, which in conse-

401quence of (43) and (1) within the Debye sphere is

402always negative:

D ¼ k
U

qj j3
\0 ð55Þ

404404Thus, the condition (53) is satisfied for the equilib-

405rium positions L1þ ; L1�, and hence the condition (52)

406is also satisfied, hence the equilibrium positions

407L1þ ; L1� are unstable.

408We now investigate the stability at the other

409collinear equilibrium positions L2þ, L2�, L3þ and

410L3�, found from the four equations (28)–(31). Below

411we prove that at these points A0
[ 1 as well. For this

412purpose equation (25) can be rewritten as
413

0 ¼ xð1� 1� l

q31
� l

q32
Þ þ ð1� lÞ

q31
x1 þ

l

q32
x2

þ k
Uðx� aÞ
ðx� aÞ3

ð56Þ

415415Considering that x1 ¼ �l, x2 ¼ 1� l, get

xð1� l

q31
þ l

q32
� 1Þ ¼ lð1� lÞð 1

q32
� 1

q31
Þ

þ k
Uðx� aÞ
ðx� aÞ3

ð57Þ

417417comparing this expression with Eqs. (40), (43) and

418(53) write it as
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A0 � 1 ¼ 1� l

q31
þ l

q32
� 1� k

U

qj j3

¼ lð1� lÞ
x

ð 1
q32

� 1

q31
Þ � k

U

qj j3
þ k

Uðx� aÞ
xðx� aÞ3

ð58Þ

420420 Note that at the points L2þ and L2�, the conditions
421 x[ 0 and q2\q1 are satisfied, and at the points L3þ
422 and L3�, the conditions x\0 and q2[ q1. Besides

�k
U

qj j3
þ k

Uðx� aÞ
xðx� aÞ3

[ 0 ð59Þ

424424 since U\0 and x always many orders of magnitude

425 greater than q, which does not exceed the relative

426 Debye length (23). Therefore, in these considered

427 cases we get

A0
[ 1 ð60Þ

429429 It follows that condition (52) is also satisfied. Thus,

430 we have proved that the all new collinear equilibrium

431 points (L1þ ; L1� L2þ ; L2� L3þ ; L3�) are unstable.

432 5 Numerical simulation

433 This section shows the effect of the electrostatic

434 charge level on the capture of the E-capsule in the

435 vicinity of the Mars-Fobos libration point L1, in which

436 the orbiter together with the E-capsule generates the

437 attracting E-field. Note that the Debye length near the

438 L1 point is unknown; approximate Debye length

439 values are given for the Stickney crater, located on

440 Phobos’ surface directly under the L1 point. Depend-

441 ing on Mars local time, this parameter ranges from 13

442 to 47 m [14]. In the absence of accurate data, all

443 calculations are performed for kD ¼ 45m. Since we

444 study the motion of the capsule relative to the orbiter,

445 which is in the L1 point, it makes sense to pass from the

446 frame Oxy to the frame L1XY (Fig. 3) by changing the

447 variable

x ¼ X þ a1 ; y ¼ Y ð61Þ

449449 where a1 is abscissa of the Mars-Phobos L1 point

450 Then taking into account (61), the motion equations

451 (7) and (8) can be rewritten as

€X ¼ oWE

oX
þ x2ðX þ a1Þ þ 2x _Y ð62Þ

453453
€Y ¼ oWE

oY
þ x2Y � 2x _X ð63Þ

455455where the effective potential is written as

WEðX; YÞ ¼G
m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX þ a1 þ dlÞ2 þ Y2

q

0

B

@

þ m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX þ a1 � dð1� lÞÞ2 þ Y2

q

1

C

A

� k
P

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 þ Y2
p

ð64Þ

457457where P ¼ kCqOq\0 is the charge level.

458All trajectories of the capsulem ¼ 10 kg begin with

459the same initial conditions in the vicinity of point L1
460from the side of Phobos in the frame L1XY

X0 ¼ 81:533m; Y0 ¼ 10:829m;
_X0 ¼ �0:043m=s; _Y0 ¼ �0:017m=s

ð65Þ

462462Figure 3 demonstrates the E-capsule trajectories

463for different charge levels:

P ¼ kCqOq ¼ 0; �0:28; �0:32; �0:40 ½N �m2�

465465In the first case the E-field is absent, therefore, the

466capsule does not reach the vicinity of the point L1, the

467same thing we can see when the charge level is not

468high enough (P ¼ �0:28N �m2). If the charge level is

469equal P ¼ �0:32N �m2 and more

470(P ¼ �0:40N �m2), there are several turns of the

471capsule around the point L1, and the greater the charge

472level, the more turns the E-capsule performs around

473the point L1.

4746 Conclusion

475This paper shows within the framework of the planar

476circular restricted three-body problem that the artifi-

477cial attractive E-field at one of the collinear libration

478points causes the splitting of this point into two other

479unstable collinear libration points located within the

480Debye length. This fact was proved analytically, using

123

Journal : Medium 11071 Dispatch : 29-1-2021 Pages : 10

Article No. : 6226 h LE h TYPESET

MS Code : NODY-D-20-02999R1 h CP h DISK4 4

V. S. Aslanov

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

481 the corresponding analytic equations, the new Jacobi

482 integral, and confirmed by the numerical simulation.

483 We have demonstrated the feasibility of the attracting

484 mission the E-capsule in a small vicinity of the Mars-

485 Fobos libration point L1.
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