Control of a Tether Deployment System For Delivery of a Re-entry Capsule

Vladimir S. Aslanov
aslanov_vs@mail.ru http://aslanov.ssau.ru

Samara State Aerospace University, Russia

IAC 2015, Jerusalem, 12-16 October 2015
• Introduction
• Application of space tether systems
• Review of experiment YES2
• The control law
• Mathematical models
• Conclusion

http://spaceports.blogspot.ru
Space tether systems

Space tether system (STS) – mechanical system of rigid bodies moving in different orbits, and the tethers (cables, ropes) that connect these bodies.

Application of STS

- Creation of an artificial gravity
- Lifting of spacecraft by rotating STS
- Space escalator
- Space elevator
- Interplanetary transfers
- **Lifting and descent of a payload into an orbit**
- Lifting of a space station ‘s orbit
- Orbital maneuvers without fuel expenditure
- Studying of an upper atmosphere
- Gravity stabilisation of an orbital spacecraft
- Generation of electrical energy by conductive tether
- Use of electrical energy for orbital maneuvers
- Use of electrodynamic tethers for deorbiting
- Et al.
Lifting and descent of a payload
Deployment schemes

Trajectory of payload

\[V_{\text{orb}} = \sqrt{\frac{\mu}{r}} \]

Altitude where \(V_A = V_{\text{orb}} \)

a) Static deployment

b) Dynamic deployment
YES-2 (2007)

Young Engineers Satellite 2:
2007 – YES-2

http://www.esa.int
YES2 mission

Foton-M3 parameters:
- Mass: 6530 kg
- Ballistic coefficient: 0.0123 m²/kg
- Inclination: 63 deg
- Minimum orbital altitude: 262 km
- Maximum orbital altitude: 304 km

Tether system parameters:
- Diameter: 0.5 mm
- Length: 30 km
- Mass density: 0.00018 kg/m
- Initial Speed of tether deployment: 2.58 m/c
- Mass End Load: 12 kg
YES2 module

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotino mass</td>
<td>5.5 kg</td>
</tr>
<tr>
<td>MASS/Fotino mass</td>
<td>12 kg</td>
</tr>
<tr>
<td>Foton-3M mass</td>
<td>6300 kg</td>
</tr>
<tr>
<td>Fotino diameter</td>
<td>0.4 m</td>
</tr>
<tr>
<td>Tether length</td>
<td>31.7 km</td>
</tr>
<tr>
<td>Tether diameter</td>
<td>0.5 mm</td>
</tr>
<tr>
<td>Tether mass</td>
<td>5.8 kg</td>
</tr>
<tr>
<td>Tether density</td>
<td>0.99 g/cm³</td>
</tr>
<tr>
<td>Tether Tensile strength</td>
<td>3 GPa</td>
</tr>
<tr>
<td>Tether Elastic modulus</td>
<td>172 Gpa</td>
</tr>
</tbody>
</table>
Scheme of payload descent (YES2)
Change in altitude in the perigee

![Graph showing change in altitude of payload vs tether libration amplitude.](image)

Fig. 5. Change in altitude of payload vs tether libration amplitude.

P. Williams et al. / Acta Astronautica (64) 2009
The change in altitude in the perigee of the capsule after the separation from the tether in the point A

\[\Delta h = R_p - R_0 \]

\[= \frac{\left[(R_0 - l_A) V_A \right]^2}{2\mu - (R_0 - l_A) V_A^2} - R_0 \]

For the tether length (YES2)

\[l = 30 \text{ km} \]

Occurs

\[\Delta h_{YES2} \approx -330 \text{ km} \]

P. Williams et al. / Acta Astronautica (64) 2009
The control law

The control law is based on the principle of a swing with variable rope

\[
\frac{dl}{dt} = -\lambda \frac{d\alpha}{dt} \tag{1}
\]

\(\lambda\) is a constant coefficient

The Coriolis force \(\Phi_c = 2m_c \dot{\alpha} \dot{l} = 2\lambda m_c \dot{\alpha}^2\) \(\tag{2}\)

results in an increase in the amplitude of oscillations tether

if \(\lambda > 0\)

results in a decrease in the amplitude of oscillations tether

if \(\lambda < 0\)
1. Mass of the capsule significantly less mass of the mother satellite

\[m_c \ll m_m \]

2. The tether is weightless

\[m_t = 0 \]

3. The tether length is always much smaller than the mother satellite orbital radius

\[l \ll R_0 \]
Equation of motion for the inextensible tether

\[\alpha'' + \frac{3}{1+e \cos \theta} \sin \alpha \cos \alpha - 2 \left(\frac{\lambda \alpha'}{l} + \frac{2e \sin \theta}{1+e \cos \theta} \right) (\alpha' + 1) = 0 \quad (3) \]

where \((\)' = \frac{d(\)}{d\theta} \)

Then the tether tension force is

\[T = m_c \left[N^2 (1+e \cos \theta)^4 \left(\frac{2e \lambda \alpha'}{1+e \cos \theta} \sin \theta + \alpha'^2 l \right) + \frac{2g_0 l}{R_0} \cos^2 \alpha \right] \quad (4) \]
To find an approximate analytical solution of the equation (3) should introduce additional assumptions.

The mother satellite moves in a circular orbit

\[e = 0 \]

The control coefficient is always much smaller than the tether length

\[\varepsilon = \frac{\lambda}{l_0} \ll 1 \]

The approximate analytical solution in implicit form \(\theta = \theta(\alpha_m) \)

or

\[
4a\varepsilon(\theta - \theta_0) = \left[(\sqrt{a} - a) \ln(\sqrt{a} + 1 + x) - (\sqrt{a} + a) \ln(\sqrt{a} - 1 - x) + 2 \ln(x) \right] \frac{\sin^2 \alpha_m}{\sin^2 \alpha_{m0}}
\]

where \(a = 17, \alpha_{m0} = \alpha_m(\theta_0) \)
The control law (1) is activated after the deflection tether \(a_m = -40 \text{deg} \)

Parameters STS similar to YES2 \((e=0.0027) \) and \(\lambda = 750 \text{m} \)

The dependences of the deflection angle and of the tether tension from true anomaly

The tether length ranged \(l \in (23.6, 25.4), \text{km} \)

The change in altitude \(\Delta h = -335 \text{km} < \Delta h_{\text{YES2}} \)
Conclusion

The results of this study suggest that a possible way to reduce the perigee altitude is to swinging motion of the tether

The proposed control law may be applicable in cases when the initial deployment is realized as static or as dynamic

It can be assumed that the control law can be used for stabilization of the tether relative to the local vertical if we take negative coefficient control $\lambda < 0$

Further research on the subject should verify the tether dynamics in more detail
Thank you

Vladimir S. Aslanov Prof., Head of the Theoretical Mechanics Department, Samara State Aerospace University

aslanov_vs@mail.ru
http://aslanov.ssau.ru