Influence of space debris attitude motion on ion beam assisted removal mission costs

Garry Popov,
Vladimir Aslanov,
Vyacheslav Petukhov,
Alexander Ledkov

Dubai, 2020
Outline

- Introduction
- Mathematical model
- Space debris unperturbed motion
- Average ion beam force calculation
- Control laws
- Results of numerical simulation
- Conclusions and results
Introduction

34000 objects >10 cm
5400 objects >1m
2000 active satellites

Active space debris removal approaches:
• docking or hard grip of an object
• capturing and tethered towing
• contactless transportation

Contactless interaction
• electrostatic
• gravitational
• magnetic
• laser irradiation
• ion flow blowing
Idea authors:
- C. Bombardelli and J. Pelaez
 (Ion Beam Shepherd)
- S. Kitamura
 (Ion Beam Irradiation Reorbiter)

The aim and objectives

The aim is to study the effect of space debris attitude motion on removal mission costs.

Objectives

- mathematical model development
- study of an unperturbed motion dynamics in a circular orbit
- determination of favorable angular motion modes of the space debris
- numerical simulation and analysis of the space debris removal mission
Mathematical model

Assumptions

• Planar motion is considered
• Space debris and spacecraft are rigid bodies
• Space debris is an axisymmetric cylinder
• Only ion and gravitational forces and torques act on the system
• The gravitational field is Newtonian
Mathematical model

Lagrange equations
\[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i \]

Generalized coordinates
- \(r \) - position vector length
- \(\nu \) - true anomaly angle
- \(\theta \) - space debris deflection angle
- \(\alpha \) - angle between \(Ay \) axis and \(AB \)
- \(d \) - distance between centers of mass \(A \) and \(B \)
- \(\beta \) – ion beam axis deflection angle
Mathematical model

Lagrange equations

\[
\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i
\]

Lagrange function

\[
L = \frac{m_A V_A^2}{2} + \frac{I_{A_z} (\ddot{\gamma} + \dot{\alpha} + \dot{\beta})^2}{2} + \frac{m_B V_B^2}{2} + \frac{I_{B_z} (\ddot{\gamma} + \dot{\alpha} + \dot{\theta})^2}{2}
\]

\[
\begin{align*}
\mu m_A &+ \frac{\mu(I_{Ax} + I_{Ay} + I_{Az})}{r_A^3} - \frac{3\mu(I_{Ax} \cos^2 \gamma_A + I_{Ay} \sin^2 \gamma_A + I_{Az})}{2r_A^3} \\
\mu m_B &+ \frac{\mu(I_{Bx} + I_{By} + I_{Bz})}{r_B^3} - \frac{3\mu(I_{Bx} \cos^2 \gamma_B + I_{By} \sin^2 \gamma_B + I_{Bz})}{2r_B^3}
\end{align*}
\]

\[\eta = \arctan \left(\frac{d \cos \alpha}{r - d \sin \alpha} \right), \quad \gamma_A = \alpha + \beta, \quad \gamma_B = \alpha + \theta - \eta\]
Lagrange equations

\[\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} - \frac{\partial L}{\partial q_i} = Q_i \]

Generalized forces

\[Q_r = P_x + F_x \cos(\alpha + \theta) - F_y \sin(\alpha + \theta) \]
\[Q_v = L_z + P_y r + F_x (r \sin(\alpha + \theta) - d \cos \theta) \]
\[+ F_y (r \cos(\alpha + \theta) + d \sin \theta) \]
\[Q_\theta = L_z \quad Q_\beta = M_z \]
\[Q_\alpha = -F_x d \cos \theta + F_y d \sin \theta + L_z \]
\[Q_d = F_x \sin \theta + F_y \cos \theta \]
System parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft mass m_A</td>
<td>500 kg</td>
</tr>
<tr>
<td>Space debris mass m_B</td>
<td>1400 kg</td>
</tr>
<tr>
<td>Space debris length</td>
<td>6.5 m</td>
</tr>
<tr>
<td>Space debris radius</td>
<td>1.2 m</td>
</tr>
<tr>
<td>Space debris moment of inertia I_x</td>
<td>1300 kg m2</td>
</tr>
<tr>
<td>Space debris moments of inertia I_y, I_z</td>
<td>6000 kg m2</td>
</tr>
<tr>
<td>Spacecraft moments of inertia I_x, I_y, I_z</td>
<td>400 kg m2</td>
</tr>
<tr>
<td>Plasma density n_0</td>
<td>2.6×10^{16} m$^{-3}$</td>
</tr>
<tr>
<td>Mass of the particle (xenon) m_0</td>
<td>2.18×10^{-25} kg</td>
</tr>
<tr>
<td>Ion velocity u_0</td>
<td>38000 m/s</td>
</tr>
<tr>
<td>Ion beam divergence angle</td>
<td>15 deg</td>
</tr>
</tbody>
</table>
Ion beam forces and torques

\[F_x = F_x(d, \alpha, \beta, \theta) \quad F_y = F_y(d, \alpha, \beta, \theta) \quad L_z = L_z(d, \alpha, \beta, \theta) \]

Space debris unperturbed motion

\[r = \text{const}, \quad \dot{r} = \omega = \sqrt{\mu r^{-3}}, \quad d = \text{const}, \quad \alpha = 0, \quad \beta = 0 \]

\[\ddot{\theta} = \frac{L_{Bz}(\theta)}{I_z} - \frac{3\mu(I_{By} - I_{Bx})}{2r^3 I_{Bz}} \sin 2\theta \]

Energy integral

\[E = \frac{\dot{\theta}^2}{2} - \frac{\int L_z(\theta)d\theta}{I_z} - \frac{3\mu(I_{By} - I_{Bx})}{4r^3 I_{Bz}} \cos 2\theta \]
Average ion beam force

\[F_D = F_x \sin \theta + F_y \cos \theta \]
Spacecraft control laws

Relative position of the spacecraft

\[M_\alpha = (\alpha - 0)k_{\alpha 1} + \dot{\alpha}k_{\alpha 2} \quad \text{and} \quad F_d = (d - d_0)k_{d 1} + \dot{d}k_{d 2} \]

\[P_x = -\frac{M_\alpha}{d} \cos \alpha - F_d \sin \alpha \quad \text{and} \quad P_y = -\frac{M_\alpha}{d} \sin \alpha + F_d \cos \alpha \]

Direction of the ion beam axis

\[M_z = (\beta_0 - \beta)k_{\beta 1} - \dot{\beta}k_{\beta 2} \]

\(L_z < 0 \) and \(L_z > 0 \)
Space debris control

\[
M_z = \begin{cases}
(\beta_1 - \beta)k_1\beta - \dot{\beta}k_2\beta, & \text{when } L_z(\theta, \beta_1)\dot{\theta}(E_* - E) > 0, \\
(\beta_2 - \beta)k_1\beta - \dot{\beta}k_2\beta, & \text{when } L_z(\theta, \beta_2)\dot{\theta}(E_* - E) > 0, \\
-\beta k_1\beta - \dot{\beta}k_2\beta & \text{otherwise}
\end{cases}
\]
Results of numerical simulation

\[\theta, \text{ rad} \]

\[d, \text{ m} \]

\[\alpha, \beta, \text{ rad} \]

\[P_x, P_y, \text{ N} \]

\[M_z, \text{ Nm} \]
Results of numerical simulation

\(\beta, \text{ rad} \)

\(t, \text{s} \)

\(M_2, \text{ Nm} \)

\(t, \text{s} \)

\(\theta, \text{ rad} \)

\(\dot{\theta}, \text{ rad/s} \)
Results of numerical simulation

\[
\dot{m} = \frac{T}{I_{sp} g_0}
\]

\[I_{sp} = 2000\text{s}\]

\[
m_1 = 11.1648\text{kg}
\]

\[
m_2 = 9.3418\text{kg}
\]

\[
\Delta t = 98.76\text{ hours}
\]

\[
\frac{m_1 - m_2}{m_2} = 0.1633
\]
Conclusions and results

• The mathematical model was developed using the Lagrange formalism.
• The undisturbed oscillations of the cylindrical space debris were studied.
• A phase trajectory on which the average ion beam force is maximum in absolute value was determined.
• The control law of the spacecraft orientation engines, which ensures the transfer of the space debris object into a motion along the phase trajectory with maximum average ion beam drag force, was proposed.
• It was shown that the attitude motion of a spacecraft during transportation has a significant effect on the required fuel costs.
Thank you!

Garry Popov

Vladimir Aslanov
aslanov_vs@mail.ru http://aslanov.ssau.ru

Vyacheslav Petukhov
vgpetukhov@gmail.com

Alexander Ledkov
ledkov@inbox.ru www.ledkov.com

This study was supported by the grant in form of subsidies from the federal budget, allocated for state support of scientific research under supervision of leading scientists in Russian institutions of higher education, scientific foundations and state research centers of the Russian Federation (7th stage, Decree of the Government of the Russian Federation No. 220 of 09 April 2010), project No. 075-15-2019-1894.