

3U Cubesat aerodynamic design aimed to increase attitude stability and orbital lifetime

Vladimir S. Aslanov, Dmitry A. Sizov

Dubai, 2020

- 1. Introduction
- 2. Proposed aerodynamic shape for 3U CubeSat
- 3. Increasing orbital lifetime with deployable nose section
- 4. Increasing attitude stability with center of mass shift
- 5. Conclusions

Место для спикера

www.nanosats.eu 700 Nanosats predicts over 2500 nanosatellites to launch in 6 years Launched Launch failures 650 Announced launch year 600 Nanosats.eu (2020 January) prediction Nanosats.eu (2018 January) prediction 545 550 -SpaceWorks 2020 (1-50 kg) forecast SpaceWorks 2019 (1-50 kg) forecast 500 SpaceWorks 2018 (1-50 kg) forecast 468 458 SpaceWorks 2017 (1-50 kg) forecast 450 435 Nanosatellites 320 300 300 SpaceWorks 2016 (1-50 kg) forecast SpaceWorks 2014 (1-50 kg) forecast Northern Sky Research 2015 forecast 297 244 250 222 200 88 142 150 129 100 88 88 85 50 31

Nanosatellites launches

INTRODUCTION

Nanosatellites types

34, Moskovskoye shosse, Samara, 443086, Russia, tel.: +7 (846) 335-18-26, fax: +7 (846) 335-18-36 www.ssau.ru, e-mail: ssau@ssau.ru

CubeSats stabilization types

Active:

- reaction wheels
- magnetorquers
- micropulsed plasma thrusters

Passive:

- gravitational
- aerodynamic

INTRODUCTION

Aerodynamical stabilization

Shuttlecock

3U CubeSats with deployable panels

Rawashdeh et al. Aerodynamic attitude stabilization for a ramfacing CubeSat, 2009 QARMAN CubeSat (Von Karman Institute), 2020

D U B A I 2 0 2 0

Problems related to the use of deployable panels

- increase of the aerodynamic drag
- decrease of the orbital lifetime

The aim of the study

Increase the orbital lifetime and attitude stability of a standard 3U Cubesat by modification of its shape and adjusting the position of the center of mass

Assumptions

- 1. The deployable panels are rigid flat plates
- 2. The attitude motion of the satellite takes place in the orbital plane
- 3. Center of mass of the satellite lies on its longitudinal axis
- 4. The aerodynamic characteristics of the satellite do not depend on the Mach number
- 5. The aerodynamic damping is negligible
- 6. Air density changes with altitude according to the US Standard Atmosphere

Main idea: use of a pyramidal nose

Standard design with blunt nose

Proposed design with pyramidal nose

Deployment process animation

Deployment process

Geometry of CubeSat with panels and pyramidal nose

12

Considered CubeSats parameters

Parameter	Value
Satellite body length	0.3 m
Satellite body cross-section area	0.01 m ²
Panel length	0.3 m
Panel deployment angle	30°
Nose section deployment angle	0 (blunt), 63.5° (pyramidal)
Principal moments of inertia of the satellite with deployed nose section and panels transverse longitudinal	0.025 kg·m² 0.005 kg·m²

Pyramidal nose decreases aerodynamic drag by the factor of 1.5!

Aerodynamic coefficients were calculated using Newton method. See P. Gallais Atmospheric re-entry vehicle mechanics, 2007

Axial force coefficient

34, Moskovskoye shosse, Samara, 443086, Russia, tel.: +7 (846) 335-18-26, fax: +7 (846) 335-18-36 www.ssau.ru, e-mail: ssau@ssau.ru

15

Normal force coefficient

Restoring pitch torque coefficient

Here Δ is the dimensionless center of mass shift

Re-entry equations

Orbital altitude evolution

Altitude loss in 100 days is 40 km less!

Attitude motion

Gravity gradient torque

$$M_{\rm g} = 3(J_z - J_x) \frac{\mu}{(R+h)^3} \cos\theta \sin\theta$$

Aerodynamic restoring pitch torque

$$M_{a} = C_{m} \frac{1}{2} \rho(h) V^{2} A l,$$
$$C_{m} = \sum_{j=1}^{k} (b_{j} + d_{j} \Delta) \sin j\theta$$

Potential energy of 3U CubeSat

Critical altitude of 3U CubeSat with pyramidal nose

Profits of the pyramidal nose and center of mass shift

- Increase of the orbital lifetime
- Better attitude stability
- Increase of the upper limit of the operational altitude range

REFERENCES

[1] Woellert K, Ehrenfreund P, Ricco A J and Hertzfeld H 2011 Cubesats: Cost-effective science and technology platforms for emerging and developing nations *Adv. Sp. Res.* **47** 663–84

[2] Sarda K, Eagleson S, Caillibot E, Grant C, Kekez D, Pranajaya F and Zee R E 2006 Canadian advanced nanospace experiment 2: Scientific and technological innovation on a three-kilogram satellite *Acta Astronaut*. **59** 236–45

[3] Deschamps N C, Grant C C, Foisy D G, Zee R E, Moffat A F J and Weiss W W 2009 The BRITE space telescope: Using a nanosatellite constellation to measure stellar variability in the most luminous stars *Acta Astronaut*. **65** 643–50

[4] Canova S, Fiorasi F, Mognato M, Grifalconi M, Reddi E, Russo A and Celotti L 2005 Modeled microgravity affects cell response to ionizing radiation and increases genomic damage *Radiat. Res.* **163** 191–9

[5] Rawashdeh S, Jones D, Erb D, Karam A and Lumpp J E 2009 Aerodynamic attitude stabilization for a ram-facing CubeSat *Adv. Astronaut. Sci.* **133** 583–95

[6] Scholz T, Rambaud P and Asma C 2013 Design of an aerodynamic stability and deorbiting system for cubesats *RAST 2013 - Proc. 6th Int. Conf. Recent Adv. Sp. Technol.* 893–7

[7] Gallais P Atmospheric re-entry vehicle mechanics 2007

[8] Aslanov V S Rigid Body Dynamics for Space Applications 2017

[9] Atmosphere US Standard 1976 National oceanic and atmospheric administration *Natl. Aeronaut. Sp. Adm. United States Air Force, Washington, DC*

THANK YOU

aslanov_vs@mail.ru sizov.syzran@gmail.com

http://aslanov.ssau.ru

This study was supported by the Russian Science Foundation (Project No. 19-19-00085)